Ministerstvo dopravy
odbor silniční infrastruktury

ÚDRŽBA, OPRAVY A REKONSTRUKCE BETONOVÝCH MOSTŮ PK

Schváleno MD – OSI č.j. 541/10-910-IPK/1
ze dne 28.6.2010, s účinností od 1. července 2010,
se současným zrušením TP 120 schválených MDS-OPK
č.j. 18928/00-120 ze dne 3.4.2000

Pontex spol. s r.o.
Praha květen 2010
TP 120 – Údržba, opravy a rekonstrukce betonových mostů PK

Obsah

1. Všeobecně.. 4
 1.1 Předmět technických podmínek.. 4
 1.2 Účel opravných prací.. 4
 1.3 Technické požadavky... 5
2. Názvosloví a definice .. 6
 2.1 Všeobecně... 6
 2.2 Použití termínu opravné práce, oprava a přestavba (rekonstrukce) ... 6
 2.3 Ochona a oprava .. 6
 2.4 Definice jednotlivých pojmů... 6
 2.4.1 Porucha konstrukce... 7
 2.4.2 Vada konstrukce... 7
 2.4.3 Zázava ... 7
 2.4.4 Stavební údržba ... 7
 2.4.5 Oprava ... 7
 2.4.6 Přestavba (rekonstrukce)... 7
 2.4.7 Zatížitelnost .. 7
 2.4.8 Změna statického systému .. 7
 2.4.9 Zesílení .. 7
 2.4.10 Spražená železobetonová deska.. 8
 2.4.11 Vyrovňovací vrstva... 8
 2.4.12 Rozšíření mostu .. 8
 2.4.13 Trhla .. 8
 2.4.14 Konstrukční trhla ... 8
 2.4.15 Nekonstrukční trhla ... 8
 2.4.16 Dilatační spára ... 8
 2.4.17 Pracovní spára ... 8
 2.4.18 Neutralizace .. 8
 2.4.19 Karbonatace .. 8
 2.4.20 Životnost (návrhová) ... 8
3. Příprava opravných prací ... 9
 3.1 Všeobecně... 9
 3.2 Opravné práce na základě stavu mostu... 9
 3.3 Opravné práce z jiných důvodů než je stav mostu.. 10
 3.3.1 Všeobecně... 10
 3.3.2 Oprava (rekonstrukce) pozemní komunikace ... 10
 3.3.3 Rozšíření mostu ... 10
 3.3.4 Odstranění nevyhovujícího prostorového uspořádání ... 10
 3.3.5 Zvětšení průtočného profilu pod mostem ... 11
 3.3.6 Úpravy pod mostem .. 11
 3.4 Průběh přípravy opravných prací .. 11
 3.4.1 Všeobecně... 11
 3.4.2 Zahájení přípravy opravných prací ... 11
 3.4.3 Dokumentace pro vydání územního rozhodnutí/dokumentace k oznámení o záměru v území . 12
 3.4.4 Projektová dokumentace pro vydání stavebního povolení/projectová dokumentace pro . 12
 ohlášení stavby .. 12
 3.4.5 Zadávací dokumentace stavby .. 13
 3.4.6 Realizační dokumentace stavby ... 13
 3.4.7 Platnost diagnostického průzkumu ... 13
 3.4.8 Diagnostický průzkum během stavby ... 13
 3.4.9 Dokumentace skutečného provedení stavby a první hlavní prohlídka 13
 3.5 Kategorie opravných prací .. 13
4. Projekt diagnostiky a údržby mostu .. 15
 4.1 Všeobecně... 15
 4.1.1 Obecné zásady ... 15
TP 120 – Údržba, opravy a rekonstrukce betonových mostů PK

4.1 Rozsah PDÚ ... 15
4.1.2 Popis mostního objektu .. 16
4.1.2.2 Režim prohlídek ... 16
4.1.2.3 Diagnostický průzkum a měření ... 17
4.1.2.4 Dlouhodobé sledování ... 17
4.1.2.5 Údržba a opravy ... 18
4.1.2.6 Grafické přílohy ... 18
4.2 Doporučení pro plánování údržby mostu ... 18
4.2.1 Plánování a celoživotní péče o konstrukci ... 18
4.2.2 Filozofie hospodaření s konstrukcemi ... 19

5. Návrh opravných prací ... 22
5.1 Všeobecně .. 22
5.1.1 Obecné požadavky na opravné práce ... 22
5.1.2 Možnosti návrhu opravných prací ... 22
5.1.3 Technickoekonomické posouzení .. 23
5.2 Mostní svršek a vybavení ... 23
5.2.1 Vozovka ... 23
5.2.2 Izolační systém ... 24
5.2.3 Římsa .. 25
5.2.4 Silniční záčtné systémy .. 26
5.2.5 Odvodnění mostů .. 27
5.3 Mostní závěry ... 29
5.3.1 Všeobecně .. 29
5.3.2 Podklady pro rozhodnutí o způsobu opravy ... 29
5.3.3 Výměna mostního závěru ... 29
5.4 Mostní ložiska .. 30
5.4.1 Všeobecně .. 30
5.4.2 Výměna ložiska ... 30
5.4.3 Oprava ložiska ... 30
5.4.4 Oprava uložení ložiska .. 30
5.4.5 Rektaifikace ložiska ... 30
5.5 Nosná konstrukce ... 31
5.5.1 Všeobecně .. 31
5.5.2 Podklady pro rozhodnutí o způsobu opravných prací 31
5.5.3 Opravné práce ... 31
5.6 Spodní stavba a založení ... 35
5.6.1 Všeobecně .. 35
5.6.2 Podklady pro rozhodnutí o způsobu opravných prací 35
5.6.3 Opravné práce ... 36
5.7 Ostatní části mostu ... 39

6. BEZPEČNOST A OCHRANA ZDRAVÍ PŘI PRÁCI ... 39

7. Související normy a předpisy ... 40

Příloha A – Přehled metod oprav ... 41
A.1 Všeobecně ... 41
A.2 Přehled aktivit dle EN 1504 – 9 ... 41
A.3 Příčiny vad a metody ochrany/opravy konstrukce ... 43
A.4 Výběr varianty ochrany/opravy .. 44
A.5 Postup při řízení a provádění zásahu na konstrukci .. 44

Příloha B – Přehled metod ochrany/oprav betonových konstrukcí 47
B.1 Degradovaný beton .. 47
B.2 Koroze výztuže ... 49
TP 120 – Údržba, opravy a rekonstrukce betonových mostů PK

1. Všeobecně

1.1 Předmět technických podmínek

Tyto technické podmínky (dále TP) platí pro přípravu, projektování a provádění údržby, oprav a přestaveb (rekonstrukcí) betonových mostů a lávek pozemních komunikací včetně jejich vybavení (součásti, příslušenství).

Technické podmínky platí také pro betonové části mostů z jiných materiálů, než je beton (např. mosty s nosnou konstrukcí ocelovou, dřevěnou nebo kamennou) a další betonové konstrukce pozemních komunikací (např. zdi, nádrže, propustky, tunely, galerie apod.).

TP lze v přiměřeném rozsahu použít pro mosty na účelových komunikacích s neveřejným provozem, tramvajové mosty a mosty Metra.

1.2 Účel opravných prací

Účelem opravných prací je odstranění vad a poruch, zlepšení uživatelských parametrů, zastavení korozních procesů a prodloužení životnosti mostu.

Opravné práce na mostě je možné rozdělit na opravy a rekonstrukce. Jako oprava mostu jsou označovány veškeré práce, které nesouvisí se zásadní úpravou/výměnou hlavních nosných prvků nosné konstrukce nebo spodní stavby. Jedná se především o opravy povrchu betonu, vozovky, výměnu mostních závěrů, záchytných zařízení, říms a pod.. Při rekonstrukci dochází k výměně/zesílení hlavních nosných prvků nebo celé nosné konstrukce/ spodní stavby.

V průběhu výstavby a provozu konstrukce je řada fází. Typický sled jednotlivých fází je následující:

- záměr – investor stanovuje základní požadavky na konstrukci,
- projektová příprava – zpracování a projednání jednotlivých stupňů PD,
- realizace – provádění stavby
- provoz – provozování a údržba konstrukce
- likvidace – kompletní demolice nebo přestavba

Na obr. 1 je znázorněn typický přehled jednotlivých fází v průběhu života betonové konstrukce, včetně potřebných aktivit.
TP 120 – Údržba, opravy a rekonstrukce betonových mostů PK

1.3 Technické požadavky

Zásadně jsou technické požadavky na mostní konstrukci dány platnými normami, TP a TKP.

Je nutné mít na zřeteli, že konstrukce se skládá z řady prvků které jsou různě ovlivněny vnějším prostředím a těž jsou různě zatíženy. Z toho plyne různá rychlost degradace těchto prvků a též požadavek na různé způsoby jejich údržby.

Je též nutné vzít v úvahu, že konstrukce se skládá z různých částí, které mají různou délku doby životnosti (většinou kratší než je doba životnosti vlastní nosné konstrukce, např. mostní závěry, vozovka, odvodňovací systém a pod.).

Obr. 1 - typický přehled jednotlivých fází v průběhu života betonové konstrukce

Tento dokument je obsahově identický s oficiální tiskněnou verzí. Byl vytvořen v systému TP online a v žádném případě nenahrazuje tiskněnou verzi.
2. Názvosloví a definice

2.1 Všeobecně
V těchto technických podmínkách se používá názvosloví podle ČSN 73 6200, ČSN 73 6220 a ČSN 73 6221. Pokud se uvádí názvosloví definované v jiných předpisech, je to v čl. 2.4 uvedeno.

2.2 Použití termínu opravné práce, oprava a přestavba (rekonstrukce)
Pro jednoduchost se dále v těchto technických podmínkách používá termín opravné práce pro termín oprava, přestavba a rekonstrukce.
Pokud se stavební údržba provádí podle těchto technických podmínek, vztahuje se termín opravné práce i na stavební údržbu.

2.3 Ochrana a oprava
Slovní spojení ochrana a oprava vychází z ČSN EN 1504-9 (73 2101) a používá se v těchto TP pro rozvedení zásad a metod ochrany a opravy betonové konstrukce bez rozlišení, o jakou část betonových mostů jde.

2.4 Definice jednotlivých pojmů
V tomto článku jsou uvedeny definice pojmů, které nejsou uvedeny v ČSN 73 6200, ČSN 73 6220, ČSN73 6221. Pro definice pojmů pro výrobky a systémy pro ochranu a opravy betonových konstrukcí platí ČSN EN1504-1 až 9 a TKP 31. Definice některých pojmů jsou v následujícím textu z této normy převzaty.
2.4.1 Porucha konstrukce
Změna konstrukce proti jejímu původnímu stavu, která zhoršuje její spolehlivost.

2.4.2 Vada konstrukce
Nedostatek konstrukce způsobený:
a) chybným návrhem,
b) chybným provedením,
c) použitím nevhodných, popř. vadných hmot,
d) použitím nevhodné kombinace hmot,
e) zabudováním vadných výrobků,
f) kombinací několika výše uvedených příčin.

2.4.3 Závada
Závady vznikají v důsledku vad, užívání a stárnutí konstrukce, přičemž se výrazně mění užitkové vlastnosti.

2.4.4 Stavební údržba
Základní definici stavební údržby uvádí příloha A ČSN 73 6221. Pro provádění stavební údržby není třeba vypracovat dokumentaci.

2.4.5 Oprava
Základní definici opravy uvádí čl. A.1.3.1 ČSN 73 6221.

2.4.6 Přestavba (rekonstrukce)
Přestavba (rekonstrukce) může být částečná nebo úplná. Částečnou přestavbou mostu se rozumí změna funkce a/nebo tvaru některých částí mostu. Úplnou přestavbou pak úplná výměna spodní stavby a/nebo nosné konstrukce mostu nebo celého mostu.

2.4.7 Zatížitelnost
Je definována v ČSN 73 6222.

2.4.8 Změna statického systému
Opravné práce, jejichž součástí je vytvoření statického systému odlišného od statického systému mostu před opravnými pracemi. Změna statického systému se provádí za účelem zvýšení zatížitelnosti mostu, snížení pružiny mostu nebo zlepšení jízdní pohody na mostě.

2.4.9 Zesílení
Taková přestavba mostu, při níž dojde ke zvýšení zatížitelnosti mostu zvětšením rozměrů mostu, přidáním dalších prvků a/nebo změnou vyztužení (betonářskou nebo předpínací výztuží) betonového průřezu spodní stavby a/nebo nosné konstrukce mostu.
TP 120 – Údržba, opravy a rekonstrukce betonových mostů PK

2.4.10 Spřažená železobetonová deska
Zesílení nosné konstrukce, při níž se ke stávajícím konstrukčním prvkům nosné konstrukce přidává na stávající mostovku deska z monolitického železobetonu spolupůsobící pro určitý druh zatížení s původní nosnou konstrukcí.

2.4.11 Vyrovnávací vrstva
Vrstva betonu nebo vrstva z jiné hmoty (speciální silikátové hmoty, polymerní betony nebo malty apod.) položená na stávající mostovku, která roznáší svou tloušťku zatížení do nosné konstrukce a vytváří povrch vhodný pro řádné provedení izolační vrstvy.

2.4.12 Rozšíření mostu
Přestavba mostu, při níž je zvětšena šířka mostu.

2.4.13 Trhlina
Porucha v betonu, případně správkové hmotě, narušující souvislost a umožňující průnik oxidu uhličitého, kyslíku, vody, vodní páry, roztoků chemických rozmrazovacích látek do větší hloubky a vyšší rychlosti než pouze průsakem.

2.4.14 Konstrukční trhlina
Viz. TP Zásady pro omezení vzniku trhlin v betonových mostech -návrh 2010.

2.4.15 Nekonstrukční trhlina
Viz. TP Zásady pro omezení vzniku trhlin v betonových mostech -návrh 2010

2.4.16 Dilatační spára
Mezera oddělující jednotlivé konstrukční prvky a části nebo vrstvy a umožňující jejich dilataci.

2.4.17 Pracovní spára
Napojavačí místo, styk na kontaktu hmoty dříve a později nanesené. Může vzniknout ve stejné hmotě krátkodobým přerušením ukládání či nanášení nebo mezi dvěma různými hmotami (např. beton a správková hmota).

2.4.18 Neutralizace
Proces snižování alkality povrchových vrstev betonu v důsledku reakce SO₂ a dalších kyselých látek v prostředí s betonem.

2.4.19 Karbonatace
Zvláštní případ neutralizace - proces snižování alkality povrchových vrstev v důsledku reakce hydroxidu vápenatého, vzdušného oxidu uhličitého a vody.

2.4.20 Životnost (návrhová)
Očekávaná doba využitelnosti betonové konstrukce za předpokládaných podmínek.

8/50
3. Příprava opravných prací

3.1 Všeobecně

Základem pro stanovení způsobu opravy/výměny mostu je pravidelné a kvalitní zpracování hlavních prohlídek v daných intervalech (viz ČSN 736221) a potřebných doplňujících diagnostických průzkumů jednotlivých částí mostního objektu.

V případech kdy nejsou pochyby o příčinách poruch a rozsahu poškození mostu je možné stanovit způsob a rozsah opravy z výsledků hlavní (mimořádné) prohlídky, ve všech ostatních případech je nutný doplňující diagnostický průzkum a statický výpočet zatížitelnosti mostu. Doplňující průzkum je prováděn na základě požadavků stanovených v opatřeních z hlavních a mimořádných prohlídek.

Doplňující průzkum může být prováděn pouze inženýry s odpovídajícím oprávněním MD ČR a se znalostí s metodami pro stanovení vhodných způsobů oprav a rekonstrukci mostů.

Při výběru vhodné varianty opravy mostu je potřebné se zaměřit nejen na stav mostního objektu, ale i na důsledky, které jednotlivé varianty budou mít pro předělení požadované dopravy na mostě. Výsledkem by mělo být převést dopravu spolehlivým a bezpečným způsobem a nezaměřit se jen na čistě technické řešení problému.

Výběr strategie obnovy je série činností provedených za účelem získat jistotu, že most splní svůj účel. Úplné rozmezí vhodných strategií může být rozděleno do čtyř typů:

- provést nyní úplnou opravu a uvést most zpět do stavu jako by byl nový,
- provést nyní některé částečné opravy tak, aby se odložila hlavní oprava/výměna,
- zatím nedělat nyní nic, čekat dokud most nebo jeho prvky nebudou dále bezpečné a pak je vyměnit/zesílit,
- nedělat nic a když most nebudě dále bezpečný pro provoz, tak se uzavře a přijmou se náklady uživatelů komunikací, které budou následovat.

Pro degradované mostní konstrukce, nebo jejích části, je nutné stanovit alternativy jejich oprav nebo výměny. Následně musí být stanoveny celkové náklady pro každou alternativu řešení, výběr nejvhodnějšího řešení opravy/výměny má být založen na porovnání těchto nákladů. Možné alternativy opravy musí brát v úvahu použití různých typů oprav a různých časů pro jejich realizaci během doby životnosti mostu a též možnost výměny této konstrukce.

3.2 Opravné práce na základě stavu mostu

Provádí se zejména na základě následujících zjištění:

a) neodstranění zjištěné závady v určitém čase (nebezpečí porušení dalších částí mostu, případně značné zvýšení nákladů na později provedené práce),
b) stav některých částí mostu ohrožuje bezpečnost silničního provozu,
c) prokázaná zatížitelnost mostu, která neodpovídá dopravnímu významu komunikace, na níž se mostní objekt nalézá (výpočtem zatížitelnosti, zatěžovací zkouškou).
3.3 Opravné práce z jiných důvodů než je stav mostu

3.3.1 Všeobecně
Tento článek pokrývá případy zásahu do mostu, který je vyvolán různými faktory, ne však stavem mostu/nízkou zatížitelností. Jsou to například:

a) oprava vozovky přilehlého úseku pozemní komunikace nebo rekonstrukce stávající komunikace včetně mostu (čl. 3.3.2),

b) rozšíření stávající komunikace, její směrová a výšková úprava, přidání dalších pruhů (jízdních, přidatných pruhů apod.) - čl. 3.3.3,

c) odstranění nevyhovujícího prostorového uspořádání (zúžení nebo snížení prostoru) na stávajícím moste nebo v podjezdu (čl. 3.3.4),

d) zvětšení průtočného profilu pod mostem (čl. 3.3.5),
e) úpravy pod mostem (čl. 3.3.6).

3.3.2 Oprava (rekonstrukce) pozemní komunikace
Při přípravě opravy (rekonstrukce) úseku komunikace, která prochází také po mostě, je nutné stanovit zvláštní podmínky, za nichž je možno opravu (rekonstrukci) komunikace na most provést. Výše uvedené podmínky musí být plně v souladu s témito TP. Případně musí být brán především zřetel na stav mostu, tj. stavu komunikace, směrové a výškové poměry na moste, odvodnění mostu, mostní závěry, mostní izolace, závěsky, zatížitelnost apod.
Musí být prokázáno, že výměna vozovky (obrusné vrstvy) nebude zhoršen stav mostu. Při návrhu musí být brán zřetel i na hospodárnost opravných prací na mostě, možnost etapizace opravných prací. Provedením opravných prací v rámci opravy komunikace nesmí být znemožněno odstranění závad v další etapě opravných prací.

3.3.3 Rozšíření mostu
Rozšířením mostu se rozumí zvětšení šířky nosné konstrukce v souvislosti s rozšířením komunikace nebo chodníku před a za mostem. Rozšíření mostu přichází do úvahy také bude-li na mostě bez chodníku zřízen chodník nebo cyklistická stezka, přitom tento chodník nebo cyklistická stezka může být před a za mostem veden zcela samostatně. (Viz také čl. 3.3.4.)
Rozšířením mostu mají být na mostě zachovány stejné šířkové parametry jako na přilehlém úseku pozemní komunikace (viz. ČSN 73 6201), z ekonomických důvodů může být i u mostů delších než 100 m zmenšená šířka krajnic (viz. ČSN 73 6201).

Dokumentace pro územní rozhodnutí určí způsob rozšíření mostu s ohledem na stav původního mostu a dispoziční požadavky. Způsob rozšíření může být stanoven variantně. Součástí práci na rozšíření mostu musí být i opravné práce na původní části mostu, předběžný rozsah těchto prací musí být stanoven již v dokumentaci pro územní rozhodnutí. Součástí dokumentace pro územní rozhodnutí jsou i průzkumné práce jejichž součástí je vždy potřebný diagnostický průzkum a statické posouzení zatížitelnosti rozšířeného mostu. Dokumentace pro stavební povolení musí na základě výsledků diagnostického průzkumu stanovit jednoznačně způsob rozšíření mostu a stanovit podrobný rozsah opravných prací na původním místě.

3.3.4 Odstranění nevyhovujícího prostorového uspořádání
Způsoby odstranění nevyhovujícího prostorového uspořádání jsou shodné se způsoby popsanými v čl. 3.3.3.
Odstranění stávajícího nevyhovujícího průjezdního a/nebo průchozího prostoru v podjezdu lze odstranit opravnými pracemi na mostě (podjezdu) nebo zásahy (změnu směrového a výškového vedení) do pozemní komunikace v podjezdu.
3.3.5 Zvětšení průtočného profilu pod mostem
Jsou-li u mostu během jeho provozu zjištěny nedostatečné rozměry průtočného profilu pod mostem, je třeba zahájit přípravu opravných prací vedoucích k odstranění skutečností, které mohou ohrozit bezpečnost a trvanlivost mostního objektu.
Součástí této přípravy je především zajištění potřebných hydrotechnických výpočtů, které jednoznačně prokáží splnění příslušných ustanovení ČSN 73 6201 a TP 204 pro most po provedených opravných pracích.

Opravnými pracemi na mostě by se mělo dosáhnout parametrů vyžadovaných ČSN 73 6201. Přitom se musí posoudit, zda je možné těchto parametrů dosáhnout i úpravami koryta v okolí mostu nebo úpravou území pod mostem, opravou nebo zřízením opevnění apod.

3.3.6 Úpravy pod mostem
Při přípravě úprav pod mostem (opra/rekonstrukce pozemní komunikace, železniční trati, vodohospodářské úpravy, terénní úpravy apod.) je nutné stanovit zvláštní podmínky, za níchž je možné tyto úpravy provést. Přitom smí být provedeny jen takové úpravy, které nepovedou ke zhoršení stavu mostu.
Zejména musí být úpravami zajištěno:
- zachování alespoň stávajícího prostorového uspořádání,
- zachování příslušného mostního průjezdu železniční trati,
- ochrana spodní stavby mostu proti nárazu vozidla,
- ochrana spodní stavby mostu proti podepření,
- odvodnění celého prostoru pod mostem, zabezpečení svahových kuželů,
- další podmínky vyplývající z charakteru prací pod mostem.

3.4 Průběh přípravy opravných prací
3.4.1 Všeobecně
Postup přípravy opravných prací je schématicky znázorněn na vývojovém diagramu - obr. 3. Nutnost provedení opravných prací z důvodu stavu mostu vychází obvykle ze stavu zjištěného při hlavní prohlídce. Je-li podezření o výrazném zhoršení stavu mostu mimo termín hlavních prohlídek, je nutné provést mimofádnou prohlídku.

3.4.2 Zahájení přípravy opravných prací
Zahájení přípravy opravných prací předchází:
- zjištění potřeby opravných prací při hlavní nebo mimofádné prohlídce u mostů, kde je podnětem stav mostu nebo nízká zatížitelnost mostu ve smyslu čl. 3.2,
- hlavní (mimofádná) prohlídka u mostů, na nichž budou prováděny opravné práce z jiného důvodu než je stav mostu.
Hlavní nebo mimofádná prohlídka se provádí v souladu s čl. 4.2 s následujícími ČSN 73 6221. Poté je nutné rozhodnout, zahájit-li se přípravné práce nebo budou provedena pouze provizorní opatření (např. omezení šířky průjezdního prostoru), aby se zamezilo zhoršení stavu do určité podmínek stanovené doby a opravné práce se odloží. Odstranění menší závady může být provedeno v rámci stavební údržby.
Jsou-li pro zahájení opravných prací jiné důvody než je stav mostu, provizorní opatření se provádějí jen ve výjimečných případech.
3.4.3 Dokumentace pro vydání územního rozhodnutí/dokumentace k oznámení o záměru v území
Je-li rozsah a charakter zamýšlených opravných prací na mostě takový, že je nutné vypracovat výše uvedenou dokumentaci, je pro ni podkladem:
 a) hlavní nebo mimořádná prohlídka provedená před zahájením přípravných prací. Ta se bude opakovat jen v případě, že od poslední prohlídky uběhlo více než 24 měsíců,
 b) statický výpočet zatížitelnosti mostu, včetně potřebného diagnostického průzkumu pro tento výpočet dle TP 72.

Obsah dokumentace pro územní rozhodnutí je dán TKP-D a Směrnici pro dokumentaci staveb PK.

3.4.4 Projektová dokumentace pro vydání stavebního povolení/projektová dokumentace pro ohlášení stavby
Jako podklad pro zadání na vypracování výše uvedené dokumentace se zpracovává:
 a) diagnostický průzkum,
 b) výpočet zatížitelností mostu po opravě,
 c) návrh rozsahu a způsobu opravných prací,
 d) geodetické zaměření mostu a okolí,
Diagnostický průzkum může být proveden ve více etapách. Ve výjimečných případech může být zcela vypuštěn (viz. TP 72) a nahrazen hlavní (mimořádnou) prohlídkou.
Výpočet zatížitelností mostu se provádí podle ČSN 736222.
Návrh rozsahu a způsobu opravných prací je součástí zprávy diagnostického průzkumu a musí zahrnovat výsledky výpočtu zatížitelnosti. Návrh obsahuje základní klasifikaci opravných prací do kategorií podle čl. 3.5 a jejich podrobné rozvedení. Výše uvedené činnosti mohou být zadávány samostatně a výsledky předány zhotoviteli dokumentace pro stavební povolení nebo mohou být tomuto zhotoviteli zadány v plném rozsahu.
3.4.5 Zadávací dokumentace stavby
Obsah dokumentace je dán Směrnici pro dokumentaci staveb PK. Vypracování projektové dokumentace pro provádění stavby (PDPS) může být sloučeno s vypracováním dokumentace pro stavební povolání. Součástí dokumentace musí být i stanovení předběžného rozsahu diagnostického průzkumu během stavby podle čl. 3.4.8.

3.4.6 Realizační dokumentace stavby
Realizační dokumentace stavby slouží ke zpřesnění údajů obsažených v dokumentaci pro zadání stavby, stanovují se konkrétní technologické postupy a hmoty, které budou při opravných pracích použity.
Realizační dokumentací zajišťuje zhotovitel stavby nebo opravných prací na mostě. Obsah realizační dokumentace je dán Směrnici pro dokumentaci staveb PK. Realizační dokumentace a její případné změny musí být schváleny objednatelem stavebních prací.
Zhotovitel stavby zajišťuje odbornou pomoc zhotovitele realizační dokumentace při důležitých operacích na stavbě a vypracování změn dokumentace vyplývající ze změn předpokladů, uvedených ve vypracované realizační dokumentaci.

3.4.7 Platnost diagnostického průzkumu
Diagnostický průzkum pozbyvá jako podklad pro vypracování dokumentace pro stavební povolení (dokumentace DSP) platnost po uplynutí doby 36 měsíců od vydání diagnostického průzkumu do zahájení prací na dokumentaci.
Nejpozději po vyšším dobu době musí být objednatelem zajištěna aktualizace diagnostického průzkumu za účelem zjištění změn ve stavu mostu od provedení původního diagnostického průzkumu.

3.4.8 Diagnostický průzkum během stavby
Zhotovitel zajišťuje nebo provádí vlastními silami diagnostický průzkum během stavebních prací stanovený v zadávací dokumentaci stavby (viz. čl. 3.4.5), kterým se zjišťuje stav jednotlivých částí konstrukce, na nichž nebylo možno z důvodu nepřístupnosti, ekonomické nebo technické náročnosti diagnostických prací na provozovaném mostě či z jiných důvodů provést diagnostický průzkum před započetím prací na dokumentaci. Diagnostický průzkum se provádí i u částí, jejichž stav výrazným způsobem neodpovídá stavu zjištěnému předchozím diagnostickým průzkumem.

3.4.9 Dokumentace skutečného provedení stavby a první hlavní prohlídka
Na závěr prací předloží zhotovitel stavby/mostu dokumentaci skutečného provedení opravných prací a zajistí ve spolupráci s objednatelem provedení první hlavní prohlídky (první hlavní prohlídky po provedení opravných prací) v souladu s ČSN 73 6221. Pokud se opravnými pracemi získá změny předpoklady výpoctu zatížitelnosti provedeného před započetím opravných prací, je nutné určit novou (opravenou) zatížitelnost mostu.

3.5 Kategorie opravných prací
Opravné práce na základě stavebního stavu se zařazují do základních kategorií podle tabulky 1.
<table>
<thead>
<tr>
<th>Kategorie</th>
<th>Označení</th>
<th>Popis</th>
</tr>
</thead>
<tbody>
<tr>
<td>Oprava stávající spodní stavby bez jejího rozšíření a změny konstrukce</td>
<td>A1</td>
<td></td>
</tr>
<tr>
<td>Oprava nosné konstrukce bez rozšíření a bez celkového zásahu do stávajícího izolačního systému nosné konstrukce (pohledy, římsy, příslušenství atp.)</td>
<td>A2</td>
<td></td>
</tr>
<tr>
<td>Oprava nosné konstrukce bez rozšíření, spojená se směnou stávající vozovky a izolačního systému a jejich znovuzřízením</td>
<td>A3</td>
<td></td>
</tr>
<tr>
<td>Částečná přestavba – úplná výměna nebo změna spodní stavby mostu bez rozšíření mostu a bez zásahu do nosné konstrukce</td>
<td>B1</td>
<td></td>
</tr>
<tr>
<td>Částečná přestavba – úplná výměna nosné konstrukce bez rozšíření mostu včetně znovuzřízení vozovky a izolačního systému</td>
<td>B2</td>
<td></td>
</tr>
<tr>
<td>Částečná přestavba spojená pouze s rozšířením nebo úpravou spodní stavby</td>
<td>C1</td>
<td></td>
</tr>
<tr>
<td>Částečná přestavba, spojená s rozšířením nosné konstrukce při ponechání původní izolačního systému mostu (nová izolace pouze na rozšířené části)</td>
<td>C2</td>
<td></td>
</tr>
<tr>
<td>Částečná přestavba, spojená s rozšířením nosné konstrukce s odstraněním původního izolačního systému a vozovky a s jejich znovuzřízením a spojená případně se zvýšením zatížitelnosti mostu</td>
<td>C3</td>
<td></td>
</tr>
<tr>
<td>Úplná přestavba v osa stávajícího mostu (demolice starého a znovuzřízení nového mostu = využití základu původního mostu je možné), spojená obvykle s rozšířením a částečnou úpravou navazující komunikace</td>
<td>D1</td>
<td></td>
</tr>
<tr>
<td>Úplná přestavba mostu (novostavba) mimo osa stávajícího mostu, spojená s novým trasováním komunikace</td>
<td>D2</td>
<td></td>
</tr>
<tr>
<td>Služební údržba</td>
<td>U1</td>
<td></td>
</tr>
<tr>
<td>Nestavební údržba</td>
<td>U2</td>
<td></td>
</tr>
</tbody>
</table>

Tab. 1 – Kategorie opravných prací mostního objektu
4. Projekt diagnostiky a údržby mostu

4.1 Všeobecně

Metodika systému hospodaření s konstrukcemi by měla být aplikována pro všechny objekty PK a pro správce těchto objektů by měla být zapracována do používaných systémů hospodaření (např. BMS).

Takto zavedený systém by měl zajišťovat bezpečný a hospodárný provoz bez nečekaných výluk dopravy při zvýšeném nákladu poruch. Podmínkou je zajištění a pravidelné doplnění posuzovaných konstrukcí pasportu mostního objektu (např. BMS).

Z tohoto důvodu je již ve fázi projektové přípravy zpracován „Projekt diagnostiky a údržby mostního objektu“ (dále jen PDÚ), který je po dokončení stavby/opravy/rekonstrukce odevzdán správci mostů a je uložen jako součást pasportu mostního objektu. Projekt diagnostiky a údržby je samostatnou přílohou dokumentace skutečného provedení stavby (DSPS).

4.1.1 Obecné zásady

U každého mostního objektu musí PDÚ určit pro budoucí provádění prohlídek, diagnostiky a údržby mostu následující:

a) předpokládaná kritická místa spodní stavby, nosné konstrukce, svršku mostu a vybavení mostu a dále pak také kritéria, technické parametry a tolerance pro posuzování jejich normálního stavu a chování, včetně stanovení meze posuvů, pootočení a přetvoření daných konstrukčních částí mostního objektu,

b) pro případy eventuálně zjištěných vybočení z definovaného normálního stavu a chování konstrukce musí být stanoven způsob nápravy, rektifikace nebo navrženo jiné opatření pro zajištění bezpečného provozu mostního objektu,

c) u mostů z předpjetého betonu se doporučuje zapracovat do PDÚ i způsob a rozsah dlouhodobého systematického sledování ve smyslu ustanovení ČSN 736221. Toto dlouhodobé sledování mostů z předpjetého betonu má být zaměřeno především na časový vývoj trvalých průhýbů nosné konstrukce a doporučuje se provádět u mostních objektů s rozpětím libovolného pole > 30,0 m,

d) u mostních objektů s vysokými pilíři (>20,0 m) nebo u mostů založených ve složitých geologických poměrech je nutné zajistit dlouhodobé sledování podpěr, jejich případné vychýlování z polohy stanovené projektem a stanovit přípustné meze těchto odchylek z hlediska bezpečnosti provozu na mostě,

e) pro dlouhodobé sledování tvarových, výškových a směrových změn nosné konstrukce a spodní stavby mostního objektu je nutné navrhnout systém měřicích bodů na konstrukci pevně a trvale spojených se sledovanou částí konstrukce, včetně vybudování potřebných stanovišť pro provádění měření,

f) pro umožnění kontroly vybraných kritických míst mostního objektu je nutno v projektové dokumentaci mostu pamatovat na zajištění vhodného a bezpečného přístupu (průlezné otvory, šachty, revizní lávky, žebříky a pod.)

4.1.2 Rozsah PDÚ

Vlastní rozsah zpracování PDÚ se bude lišit v návaznosti na významu a velikosti posuzovaného mostního objektu. Základní členění PDÚ je následující:

- popis mostního objektu
- režim prohlídek
- diagnostický průzkum
- dlouhodobé sledování
- údržba a opravy
- grafické přílohy
4.1.2.1 Popis mostního objektu

Popis mostního objektu je informací o základních údajích o mostním objektu, zpracovatelí projektové dokumentace, zhotovitelí stavby, včetně zhotovitelů/výrobců důležitých součástí (ložiska, mostní závěry a pod.) s upozorněním na odlišnosti oproti běžnému řešení.

V popisu mostního objektu se zpravidla uvede:
- identifikační a základní údaje o mostu (doplňující údaje uvedené v mostním pasportu)
- údaje o zpracovatelích projektové dokumentace, zhotovitelích stavby a dalších podhotovitelích,
- územní a geotechnické podmínky (základové a hydrologické poměry, bludné proudy),
- základy
- spodní stavba
- nosná konstrukce
- ložiska (způsob uložení NK)
- mostní závěry
- izolace desky mostovky
- systém odvodnění mostu
- mostní svršek
- mostní vybavení
- cizí zařízení
- požadavky na BOZP

4.1.2.2 Režim prohlídek

Běžné a hlavní prohlídky jsou prováděny v rozsahu a termínech předepsaných ČSN 736221 a osobami s potřebným oprávněním/ověřením, viz. Věstník dopravy 19/2009. V projektu diagnostiky a údržby mohou být předepsány kratší termíny pro provádění prohlídek v návaznosti na náročnost požadované údržby konstrukce nebo na případné první projevy začínající degradace konstrukce.

U všech typů prohlídek je zpravidla nezbytné, aby byla konstrukce zpřístupněna na dosah ruky.

První hlavní prohlídka

První hlavní prohlídka musí být provedena vždy před prvním uvedením konstrukce do provozu a vždy po provedené opravě/rekonstrukci mostního objektu. Za první hlavní prohlídku je považována také prohlídka na konstrukci v provozu, kde prohlídky nebyly doposud provedeny. V PDÚ se stanoví kdy má být provedena první hlavní prohlídka mostu v případě, že bude prováděna oprava nebo rekonstrukce mostu a dále se vymezí části konstrukce, které by měly být při této prohlídce kontrolovány se zvýšenou pozorností.

Běžné prohlídky

Běžné prohlídky se provádějí v rozsahu a termínech dle ČSN 736221, v PDÚ se určí případné odlišnosti ve stanovených termínech. Dále se upřesní, kterým částem konstrukce má být věnována zvýšená pozornost při provádění běžné prohlídky s ohledem na provádění údržby mostu. Běžná prohlídka má stanovit požadavky na provedené údržby mostu nebo požadavek na provedení mimořádné prohlídky, případné diagnostického průzkumu.

Hlavní prohlídky

Hlavní prohlídky se provádějí v rozsahu a termínech dle ČSN 736221. V PDÚ je možné předepsat i jiné než vizuální metody, které budou použity při provádění prohlídky (zjišťení tloušťky krycí betonové vrstvy, obsah chloridů, hloubka karbonatace). Výběr metod použitých při provádění prohlídky je závislý na mechanizmu degradace, prostředí ve kterém se konstrukce nachází a důležitosti konstrukce.
TP 120 – Údržba, opravy a rekonstrukce betonových mostů PK

Je vždy nezbytné aby konstrukce byla zpřístupněna na dosah ruky, v PDÚ se doporučí technika potřebná ke zpřístupnění konstrukce a případná potřeba dopravního značení při provádění prohlídky.

Některá nedestructivní měření prováděná v rámci prohlídky, jako zjištění hloubky karbonatace nebo kontaminace chloridy, jsou nezbytné ke stanovení iniciace nebo dalšího rozvoje degradace. Tímto způsobem není nezbytné postupovat u všech částí konstrukce a není nutné provádět měření ve stejných intervalech u všech částí konstrukce.

V PDÚ se rovněž předepíše způsob kontroly stavu a nastavení mostních závěrů a ložisek. Potřebné podklady se zapracují do grafické přílohy PDÚ.

Součástí PDÚ je dále stanovení požadavků na případné revize cizích zařízení umístěných na mostě, jedná se především o revize elektro-objektů (převážně kabely, nebo vlastní rozvody v tubus mostu) a nebo revize převáděných rozvodů plynu. Tyto práce se zajišťuje správce mostu samostatně a nejsou součástí hlavní prohlídky mostu.

Mimořádné prohlídky

Provedení mimořádného prohlídky se provádí v rozsahu a případech dle ČSN 736221.

Pro případ povodní se v PDÚ předepíše způsob kontroly založení a spodní stavby mostu a možné způsoby jejich poškození.

4.1.2.3 Diagnostický průzkum a měření

Diagnostický průzkum a měření jsou nezbytné pokud je potřebné získat podrobné informace o degradaci materiálů a stavu konstrukce a jako podklad pro rozhodování o způsobu opravy/rekonstrukce mostu.

V PDÚ se předepíše ve kterých případech je diagnostický průzkum vyžadován a v jakém minimálním rozsahu. Diagnostický průzkum je požadován například:

- při provádění prohlídky je zjištěna začínající degradace nebo její nárůst, nebo je nutné zajistit pasportizaci trhlin,
- při prohlídce není možné získat podrobné informace o konstrukci (příčiny degradace),
- je zřejmé, že vlivem degradace je nepríznivě narušena integrita konstrukce
- před plánovanou opravou/rekonstrukcí mostu.

Jako součást popisu konstrukce má být v PDÚ uvedena i citlivost jednotlivých prvků konstrukce na degradaci - na možné oslabení výztuže vlivem koroze, nebo oslabení betonového průřezu prvku a to nejen s ohledem na to do jaké míry je případně výztuž oslabena, ale hlavně na možná místa oslabení výztuže.

Dále mají být v popisu mostu uvedeny základní údaje o použitých materiálech při stavbě mostu, jedná se především o použité betony, betonářskou a předpiínací výztuž a konstrukční ocel.

Podrobné informace o provádění diagnostického průzkumu jsou uvedeny v ČSN ISO 13822 a v TP-72.

4.1.2.4 Dlouhodobé sledování

V návaznosti na význam a typ konstrukce mostu se zpravidla již ve fázi DSP a ZDS stanoví požadavky na dlouhodobé sledování mostu.

V případě požadavku na dlouhodobé sledování konstrukce se do PDÚ zapracuje:

- Plán požadovaného měření s určením způsobu měření a polohy měřicích bodů (zakreslení do grafické přílohy PDÚ).
- Způsob ukládání naměřených dat.
- Požadavky na vyhodnocení měření, včetně určení limitních hodnot.
Dále se předepíší požadavky na četnost prováděných měření a způsob zpřístupnění konstrukce při měření.

4.1.2.5 Údržba a opravy

V PDÚ se postupy při provádění údržby rozdělí na:
- Údržbu prováděnou v záruční době mostu nebo jeho části
- Údržbu prováděnou po ukončení záruční doby

Dále se provede členění prací na:
- Běžnou (nestavební) údržbu
- Stavební údržbu
- Opravy

Při všech typech údržby se vždy rozlišují požadavky na provádění prací při letní a zimní údržbě mostu.

Součástí PDÚ by mělo být případné stanovení životnosti jednotlivých součástí mostu a požadavky na jejich údržbu/opravy, to se týká především mostních závěrů, ložisek, izolace desky mostovky a odvodňovacího systému mostu. Dále se stanoví požadavky na práce spojené s opravou výměnou těchto součástí.

Jedná se především o stanovení případného způsobu zdvihání nosné konstrukce při provedení rektifikace nebo výměny ložisek, požadavky na úpravy izolace mostovky při provádění výměny mostních závěrů a pod.

V PDÚ se dále určí případné požadavky na činnosti správce při vysoké vodě (demontáž zábradlí, odstraňování naplavenin a pod.).

4.1.2.6 Grafické přílohy

Součástí PDÚ jsou grafické přílohy, které se zpracují podle dokumentace skutečného provedení stavby. Součástí PDÚ jsou běžně tyto přílohy:
- Přehledné výkresy mostu (doplňení mostního listu)
- Výkresy ložisek včetně návrhových parametrů ložisek
- Výkresy odvodnění mostu
- Výkresy mostních závěrů s tabulkami pro jejich nastavení
- Výkres měřicích bodů pro měření bludných proudů
- Výkresy měřicích bodů pro dlouhodobé sledování
- Tabulky pro sledování pohybu mostních závěrů a pro dlouhodobá sledování mostu.

4.2 Doporučení pro plánování údržby mostu

4.2.1 Plánování a celoživotní péče o konstrukci

Pro plánování celoživotní péče o konstrukci je rozhodující určení doby životnosti konstrukce a jejích jednotlivých částí a následný návrh PDÚ pro takto stanovené období. Návrhová (projektovaná) doba životnosti konstrukce je předpokládaná doba během, které bude konstrukce provozuschopná, pokud bude zajištěna předpokládaná údržba, ale nebude nutná žádná rozsáhlejší oprava/rekonstrukce. Projektovaná doba životnosti se stanoví na základě dále uvedených ukazatelů:
- limitní technický stav konstrukce
- doba životnosti (roky)
- minimální požadovaná úroveň spolehlivosti (pro dané období)

Trvanlivost konstrukce a prostředí ve kterém bude konstrukce provozována mají být takové aby konstrukce vydržela bez poškození po celou dobu projektované životnosti. Toto může být dosaženo několika způsobů:
- navržením vhodného ochranného systému konstrukce,
TP 120 – Údržba, opravy a rekonstrukce betonových mostů PK

- použitím materiálů, které při odpovídající údržbě nebudou degradovat během projektované doby životnosti,
- předměnováním jednotlivých částí konstrukce, tak aby byla kompenzována degradace v průběhu projektované doby životnosti.
- Sestavením konstrukce z prvků s kratší dobu životnosti, které se vyplatí několikrát za dobu životnosti vyměnit.

Výše uvedené předpoklady musí být zajištěny společně s pravidelným prováděním prohlídek (v požadovaných intervalech) a prováděním odpovídající údržby konstrukce.

4.2.2 Filozofie hospodaření s konstrukcemi

Existují dva základní směry jak zajistit opravy v rámci hospodaření s konstrukcemi:
• reaktivní přístup (řešení po vzniku závady)
• proaktivní přístup (předejít závadě)

Reaktivní přístup k údržbě/opravám je typický zahájením činnosti po zjištění závady (trhliny v betonu, odpadávání krycí vrstvy). Práce mají zajistit zpomalení rychlosti degradace a prodloužit životnost konstrukce.

Toto je znázorněno v obr. 4, kde je znázorněn příklad konstrukce s korozí výztuže v průběhu doby její životnosti (předpokládáme lineární průběh korozí v čase). Výztuž je chráněna okolním betonem až do doby depasivace krycí vrstvy vlivem karbonatace, chloridů a vlhkosti. Po inicializaci korozí dochází k porušení okolního betonu vlivem rozpínání korozních zplodin, beton je porušen trhlinami a následně krycí vrstva odpadne, nechráněná výztuž volně koroduje bez jakékoliv ochrany.

Obr. 4 - Černá křivka označuje průběh korozí bez provedení opravy konstrukce. Červená znázorňuje reaktivní přístup - oprava je provedena až po porušení krycí vrstvy výztuže. Zelená křivka znázorňuje proaktivní přístup – oprava je provedena v předstihu a dojde tak k prodloužení doby životnosti konstrukce.

Proaktivní přístup k údržbě/opravám znamená zahájení prací v předstihu před porušením betonu a umožní oddělení vzniku korozie výztuže a prodloužení doby životnosti. Znamená to, že se v předstihu provede ochranný nátěr nebo zajistí katodová ochrana výztuže.

Tento dokument je obsahově identický s oficiální tiskovou verzí. Byl vytvořen v systému TP online a v žádném případě nenahrazuje tiskovou verzi.
Souvislosti některých aspektů reaktivního a proaktivního přístupu při údržbě/opravách konstrukcí jsou znázorněny na obr. 5 a, b, obecně lze konstatovat, že proaktivní přístup zajistí snížení celkových nákladů za dobu provozu konstrukce a zároveň sníží dobu nutnou pro omezení provozu při provádění těchto oprav.

Obr. 5a
Svislá osa určuje stav konstrukce (např. zatížitelnost) v názvosti na degradaci konstrukce (např. oslabení výztuže vlivem koroze). Vodorovná osa je čas po dobu provozu konstrukce. Nejedná se pouze o stanovení stavu konstrukce na základě vizuální prohlídky, ale určení hodnoty na základě statického výpočtu a provedeného diagnostického průzkumu. K tomu musí být určeno:
- citlivost konstrukce pro danou závadu,
- typ konstrukce a její statické působení,
- předpokládaný rozvoj další degradace,
- údaje o předpokládaném zatižení konstrukce,
- skutečný vliv degradace na jednotlivé části konstrukce.
Vždy je základním požadavkem zachování bezpečnosti konstrukce.

Obr. 5b – relativní náklady na opravy konstrukce při reaktivním a proaktivním přístupu
Pokud je využíván proaktivní přístup k provádění údržby a oprav konstrukce, je nezbytné využití proaktivních metod ke stanovení stavu konstrukce. V tomto případě je zcela nedostačující pouze vizuální kontrola konstrukce (prohlídky), které správce pouze upozorní na možnost vzniku závady (zatékání, trhliny).

Obr. 6 - přínos prohlídek a NDT při proaktivním přístupu

Proaktivní přístup při stanovení stavu konstrukce znamená především využití nedestruktivních metod, které dopředu upozorní na změny kvality betonu, jako je např.:
- měření korozních potenciálů (půlčlánková metoda),
- měření hloubky karbonatace betonu,
- měření obsahu chloridů,
- měření korozních proudů.

Při proaktivním přístupu je nutné včasné vyhodnocení dat z provedených měření, které umožní předpověď dalšího rozvoje degradace konstrukce a vývoj jejího dalšího stavu. Alternativou je vyhodnocení vývoje degradace na obdobných konstrukcích (provozovaných v obdobném prostředí), kde již došlo k jejich poškození a porovnání těchto modelů.
5. Návrh opravných prací

5.1 Všeobecně

Tato kapitola popisuje běžné postupy způsobu opravných prací pro jednotlivé části betonových mostů a stanovuje podmínky pro jejich návrh a použití.

5.1.1 Obecné požadavky na opravné práce

Opravné práce na jednotlivých částech mostu i na mostě jako celku musí být navrženy tak, aby byly splněny následující podmínky:

a) Byl dodržen účel opravných prací daný podmínkami objednatele (prostorové uspořádání, zatížitelnost a další).

b) Most měl požadovanou životnost a spolehlivost.

c) Bylo vyhověno všem zadaným parametre (prostorové uspořádání, zatížitelnost apod.).

d) Opravné práce byly navrženy ekonomicky (je nutné zpracovat ekonomické vyhodnocení variant opravy/výměny konstrukce).

e) V souvislosti se stavebními náklady na opravné práce byla uvážena i výše provozních nákladů.

f) Most měl snadnou údržbu včetně dobré přístupnosti částí mostu, které rozhodují o jeho životnosti.

g) Byl zajištěn dobrý vzhled mostního objektu odpovídající jeho umístění.

5.1.2 Možnosti návrhu opravných prací

Volba způsobu opravných prací mostu je závislá na výsledcích hlavní (mimořádné) prohlídky, výpočtu zatížitelnosti mostu po opravě a diagnostického průzkumu, stavění mostu, způsobu dalšího využití mostu a dalších okolnostech.

Možnosti nebo způsoby opravných prací mostního objektu jsou následující:

a) V daném případě neprovádíme opravné práce. Opravné práce na mostě je možno odložit na pozdější dobu (pokud nemůže dojít k rychlému zhoršení stavu mostu).

b) Stanovíme zatížitelnost mostu statickým výpočtem s možností ponechat po opravě menší zatížitelnost. O tom, zda vypočtená zatížitelnost mostu je pro další funkci mostu přijatelná, se rozhodne v rámci dokumentace pro stavební povolení. Přítom je nutno uvážit především:

- další využití mostu,
- uvažovaná intenzita a skladba dopravy na mostě,
- ekonomické důvody.

Při přebírání výsledků výpočtu zatížitelnosti uložených v mostním archivu je nutné prověřit metodu výpočtu, případně provést výpočet na jiném přesnějším modelu mostu.

c) Zastavení korozních procesů (bez zlepšení stavu) v části mostní konstrukce. To je například možné u železobetonových nebo předpjetých částí konstrukcí, kde dosud nedošlo k napadení nosné betonářské, příp. předpjeté výztuže korozí (hloubka karbonatace je menší než tloušťka krycí vrstvy).

Zastavení korozních procesů je u nosné konstrukce možné mnoha způsoby, přičemž základní je zamezení přístupu vody, případně chemických rozmrazovacích látek do nosné konstrukce.

d) Zlepšení stavu části konstrukce nebo celého mostu, jeho zesílení. Zesílení nosné konstrukce mostu je vhodné tam, kde zatížitelnost mostu je pro daný most nedostatečná, a to buď:

- vlivem stavu mostu,
TP 120 – Údržba, opravy a rekonstrukce betonových mostů PK

- nedostatečnou zatížitelností, která vznikla již při stavbě nebo později přestavbě mostu.

e) Zlepšení vzhledu části konstrukce nebo celé konstrukce.

f) Částečná, případně úplná přestavba mostu.

g) Demolice mostu bez náhrady.

Opravné práce konkrétního mostního objektu se zařazují do kategorií podle čl. 3.5.

5.1.3 Technickoekonomické posouzení
Při návrhu opravných prací musí být zvážena hospodárnost návrhu tím, že jsou posouzeny varianty opravných prací. Varianty jsou posouzeny po technické a ekonomické stránce. Posouzena musí být nejen výše stavebních nákladů, ale i odhad provozních nákladů po provedení opravy pro jednotlivé varianty opravných prací. Varianty opravných prací musí být posouzeny i podle výše provozních nákladů během (úplné, částečné) uzavírky mostu. Zejména musí být uváženy náklady na úpravu a údržbu objízdné trasy, zřízení a udržování dopravního značení a signalizace, mostního provizoria apod.

5.2 Mostní svršek a vybavení

5.2.1 Vozovka
5.2.1.1 Všeobecně
Rozlišují se dva případy výměny vozovky nebo její části. Výměna vozovky bez výměny mostní izolace nebo pokládka vozovky současně s výměnou izolačního systému.

Výměna vozovky se provádí zásadně odrážejícím nebo ubouřením stávající vozovky a položením vozovky nové. Není přípustné pokládání nové obrousné vrstvy na stávající vozovku. Možné je pouze lokální zvýšení povrchu vozovky oproti povrchu původnímu v souvislosti se stanovením nové niveleny povrchu vozovky (povrchu vozovky) na mostě. Tato úprava niveleny musí být zároveň uzavírky mostu. Zejména musí být zvýšena šířka vozovky zvýšením výšky vozovky, a to jak z důvodu pohody jízdy, tak zlepšení odvodnění mostu.

Při stanovení nové niveleny může být postupováno tak, aby těla nově navrhované vozovky nebyla větší než těla původní. Pokud dojde ke zvýšení třídy vozovky, musí to být staticky zdůvodnění (musí být proveden výpočet zatížitelnosti). Musí být zajištěno navazání vozovky na nevyměněnou součásti mostu (římsy, obrubníky, mostní závěry apod.). Musí být stanovena i návaznost na vozovku na předpolí mostu. Navazání musí být provedeno v souladu s ČSN 75 6101 (bez lomů), pokud to stav vozovky za mostem umožňuje, i v nejmenším možné vzdálenosti od konce mostu.

Pokud se nivela na mostě upravuje, musí být zároveň dodržena ustanovení čl. 15.1 ČSN 73 6201. Pro vozovky na mostních objektech platí příslušné normy a předpisy, především ČSN 73 6242.

5.2.1.2 Výměna krytu vozovky bez výměny mostní izolace
Tento typ výměny se používá, jestliže je jistota, že je mostní izolace funkční, ale je nutné vyměnit vozovku nebo její část. Výměnu části vozovky se rozumí výměna buď některých vrstev vozovky nebo výměna vozovky v určité ploše nebo pásu.
Před částečnou výměnou vozovky je nutné se přesvědčit o tloušťce a skladbě mostní vozovky pomocí sond/vyvrtu, které ověří, zda je dokumentace skutečného provedení, co se tloušťky a skladby mostní vozovky týká, pravdivá.

Diagnostický průzkum musí dle prokázat, že ponechaná vrstva mostní vozovky (ložná vrstva) je v takovém stavu, že její vlastnosti nebudou ovlivňovat vlastnosti nově pokládané
TP 120 – Údržba, opravy a rekonstrukce betonových mostů PK

obrusné vrstvy a že životnost ponechané ložné vrstvy bude ještě taková, jako předpokládaná životnost nové obrousné vrstvy.
Výše uvedené platí i o životnosti mostní izolace.

5.2.1.3 Pokládka krytu vozovky na nový izolační systém
Trušštka vrstvy vozovky po opravných pracích musí být nejvýše taková, jako trušštka vozovky před opravnými pracemi. Je možná lokální změna výšky povrchu obrousné vrstvy (pokrytí), jak je uvedeno v čl. 5.2.1.1.
V případě, že byla niveleta na mostě v minulosti zvyšována přidáváním dalších vrstev vozovky, má být v rámci opravných prací provedeno její snížení na průvodní úroveň. V dokumentaci musí být stanoveno složení jednotlivých vrstev mostní vozovky a nové výšky povrchu jednotlivých vrstev vozovky. Výšky se určují zpravidla v příčných řezech po 5 m nebo v půdorysu (tzv. pokrytí vozovky). V jednotlivých příčných řezech se určí výšky základních bodů přičného řezu (bod, kudy je vedena niveleta, okraje vozovky, lomy, rozhraní jízdních pruhů, viz ČSN 736242). Výšky povrchu vozovky se určí v absolutních hodnotách a zároveň se určí trušštky jednotlivých vrstev vozovky.
U malých mostních objektů, při jednoduchém půdorysném tvaru mostu a jednoduchých sklonových poměrech je možno od stanovení výšky povrchu vozovky v řezech upustit. U mostů s takovou konstrukcí, kde je průhyb od tří vozovky větší než 10 mm, je nutné při stanovení trušštky jednotlivých vrstev počívat i s průhybem konstrukce.
Návrh vozovky musí být proveden tak, aby bylo zajištěno odvodnění jejího povrchu (viz. čl. 5.2.5.2) a povrchu izolace (viz. čl. 5.2.5.3).
U mostů s přesypávkou, na nichž probíhají opravné práce s odebráním vozovky, se navrhně skladba nové vozovky a prostorově uspořádá zpravidla shodné jako v přílehlé trase pozemní komunikace.

5.2.1.4 Přímo pojižděné izolace
Při opravných pracích na lávkách a mostech s malým dopravním zatížením a mostů zatímních je možno navrhnut přímo pojižděnou polymerní izolaci. Izolace se navrhne a pokládá na původní mostovku nebo mostovku s vyrovnávací vrstvou podle zvláštních předpisů. Viz. také ČSN 73 6242, TP 211.

5.2.2 Izolační systém
5.2.2.1 Všeobecně
Návrh a provádění izolačního systému včetně podkladu pod izolaci se řídí ČSN 73 6242. Při návrhu izolačního systému záleží na tom, v jakém rozsahu se izolační systém vyměňuje. Izolační systém může být při opravných pracích vyměněn zcela, případně s celým mostním svrškem a vybavením, anebo může jít pouze o částečnou výměnu izolační vrstvy. Úplnou výměnu izolačního systému se rozumí zřízení zcela nové izolační a ochranné vrstvy a speciální úprava desky původní mostovky nebo provedení nové vyrovnávací vrstvy, spřažené desky, příp. nové nosné konstrukce. Jako součást výměny izolačního systému musí být navržen i způsob odvodnění izolace (viz. čl. 5.2.5.3).

5.2.2.2 Celoplošná izolace
Ustanovení ČSN 73 6242 může být u opravných prací splněno následujícím způsobem:
1) Návrhem celoplošné izolace mostovky. To se navrhne v případě kompletní výměny mostního svršku a vybavení.
2) Kombinací dvou vhodných izolačních systémů odlišných pro izolaci pod vozovkou a v oblasti říms a chodníků. Tento systém izolace se uplatní také u opravných prací, u kterých je vhodné, možné a ekonomicky výhodné ponechat stávající chodník a/nebo římsu.

Je-li ponechána římsa mostu na mostě s vanovou izolací (izolace pouze pod vozovkou), je možné provést izolační vrstvu také na povrchu římsy, zejména z polymerní izolace. Pokud není navržen celoplošný izolační systém (včetně izolace pod chodníky, římsami), je nutno nosnou konstrukci chránit jiným spolehlivým způsobem.
Umožňují-li to vlastnosti polymerní izolace, je možno upustit od ochranné vrstvy. Při oprávách izolace části plochy nosné konstrukce není za předpokladu funkčnosti izolace nutno měnit stávající systém izolace za celoplošný.

5.2.2.3 Ochranná vrstva
Ochranná vrstva se při opravných pracích provádí podle ČSN 73 6242.

5.2.2.4 Izolační vrstva

5.2.2.4.1 Izolační vrstva na novou mostovku nebo vyrovnávací vrstvu
Izolační vrstva musí být řádně odvodněna podle čl. 5.2.5.3.

5.2.2.4.2 Požadavky na podklad pro izolaci
Při pokládce izolační vrstvy na mostovku, příp. vyrovnávací vrstvu, musí být zajištěno, aby vlastnosti mostovky/vyrovnávací vrstvy vyhovovaly technickým požadavkům uvedeným v ČSN 73 6242. Během přípravných prací a po odstranění vozovky je nutné provést taková diagnostická zjištění (diagnostický průzkum během provádění), která zaručí, že stávající mostovka po provedených povrchových úpravách bude schopná vyhovět výše uvedeným podmínkám, v opačném případě je nutné provedení nové vyrovnávací vrstvy.

Povrch mostovky, příp. vyrovnávací vrstvy, musí být spádován tak, že je zajištěno řádné odvodnění podle čl. 5.2.5.2.

Výběr izolační vrstvy pokládané na mostovku musí být proveden tak, aby byly uváženy následující okolnosti:

a) třída dopravního zatížení,
b) uvažovaný kryt mostní vozovky a její tloušťka,
c) skladba vozovky před a za mostem,
d) sklonové poměry mostovky,
e) možnost řádné izolace mostu kolem odvodňovačů,
f) napojení izolace na římsy, mostní závěry (pokud se při opravných pracích ponechávají),
g) snadný přechod na izolaci svislých ploch (např. u konstrukcí rozpěrákových).

Je-li prováděna pouze výměna izolace v části plochy nosné konstrukce, je nutno uvážit při výběru izolační vrstvy možnost snadného a trvanlivého napojení na původní izolační vrstvu, sloučitelnost materiálu původní a nové izolace a možnost provedení příslušného detailu na stavbě.

5.2.2.5 Speciální úpravy povrchu mostovky
Speciální úpravy povrchu mostovky jsou uvedeny v ČSN 73 6242. Způsoby odstranění a úpravy povrchové vrstvy mostovky/vyrovnávací vrstvy je možné v ploše mostovky kombinovat. Přitom je pro zvolení optimálního způsobu nutné provést diagnostický průzkum po odkrytí vozovky během provádění povrchu mostovky a případně změnit nebo zpřesnit způsoby navržené v dokumentaci pro stavební povolení (zhotovení stavby).

Není-li navržení speciálních úprav technicky účelné nebo hospodárné, navrhuje se nová vyrovnávací vrstva.

5.2.3 Římsa

5.2.3.1 Všeobecně
Obecné zásady a metody ochrany a opravy závod říms jako železobetonových konstrukcí jsou dány v příloze A. Zvláštnosti v přístupu ke způsobu opravných prací říms mostů jsou dány touto kapitolou.

5.2.3.2 Podklady pro rozhodnutí o způsobu opravných prací
Základním podkladem pro rozhodnutí o způsobu opravných prací je:
TP 120 – Údržba, opravy a rekonstrukce betonových mostů PK

- stav betonu říms (pevnost, tloušťka krycí vrstvy, hloubka neutralizace, obsah chloridů)
- stav betonářské výztuže (poloha vložek, koroze),
- stav ukotvení římsy,
- stav svodidel a zábradlí a jejich kotvení do římsy,
- stav izolace pod římsou,
- rovinatost římsy (odvodnění povrchu římsy),
- napojení římsy na mostní závěr,
- stav odvodnění prostoru pod římskou, včetně okapních plechů, zda voda stékající z chybně spádované římsy či chybně provedeného okapního plechu nezpůsobuje korozi dalších částí mostu,
- stav a způsob napojení římsy na vozovku (zvláště pokud je povrch římsy a vozovky v jedné úrovni).

5.2.3.3 Opravné práce
Z hlediska změny tvaru římsy lze způsoby opravných prací na římsy rozdělit takto:

a) ponechání římsy ve stejném tvaru po opravě a ochraně,

b) ponechání římsy a zvětšení jejího tvaru v důsledku oprav,

c) náhrada původní římsy novou.

5.2.4 Silniční záchytné systémy

5.2.4.1 Všeobecně
Silniční záchytné systémy se podle ČSN EN 1317-1 dělí na:

a) záchytné systémy pro vozidla, z nichž jsou v těchto TP uvedena svodidla (ocelová a betonová) a zábradlení svodidla,

b) záchytné systémy pro chodce - mostní zábradlí.

Při stanovení úrovně zadržení svodidel při návrhu opravných prací se postupuje zejména podle TP 114, TKP kap. 11. Přítom je třeba posoudit i způsob ochrany okolí přilehlé pozemní komunikace a kriterium hospodárnosti návrhu.

5.2.4.2 Ocelová svodidla
Svodidla se na mostě při opravných pracích ponechají nebo znovu použijí, vyhovují-li po dispoziční stránce předpisům pro příslušný typ svodidla a lze-li dodatečnými povrchovými úpravami vyhovět pro všechny díly svodidla ustanovením TKP, kap. 19, .

Nově osazovaná svodidla musí vyhovovat ČSN 73 6201, TP 114, TP 203 a TP pro příslušné typy svodidel.

5.2.4.3 Betonová svodidla

5.2.4.3.1 Všeobecně
Obecné principy a metody ochrany a opravy závad betonových svodidel a betonových svodidlových zídek jsou dány v příloze A.

Nově osazovaná svodidla musí vyhovovat ČSN 73 6201, TP 114, TP 139 a TP pro příslušné typy svodidel.

5.2.4.3.2 Podklady pro rozhodnutí o způsobu opravných prací
- stav betonu svodidel,
- stav betonářské výztuže,
- stav případného kotvení svodidla,
- stav ostatních částí mostu zabudovaných ve svodidlech nebo těsně navazujících na svodidla (odvodnění, mostní závěry apod.).

5.2.4.3.3 Způsoby opravných prací
Pro opravné práce přicházejí v úvahu dva základní způsoby:

a) Ponechání betonových svodidel a provedení opravných zásahů na původní tvar svodidla.

Tento způsob se uplatní především u kotvených svodidel. Při ponechání svodidel musí být
TP 120 – Údržba, opravy a rekonstrukce betonových mostů PK

prověřeno, zda svodidla vyhovují třídě zadržení předepsané objednatelem pro daný mostní objekt podle TKP, kap. 11 a TP 114.

b) Náhrada původních svodidel novými, tento způsob se uplatní zejména u prefabrikovaných volně stojících svodidel.

O způsobu provedení opravných prací rozhodují především ekonomické důvody.

5.2.4.4 Zábradli
Zábradlí se během opravných prací na mostě ponechávají nebo znovu použijí, vyhovují-li svým uspořádáním a především výškou ČSN 73 6201 nebo lze-li je ustanovením ČSN 73 6201 přizpůsobit. Dále pak nejsou-li zkorodována a lze-li dodatečnými povrchovými úpravami vyhovět ustanovením TP 186 a TKP, kap. 19. a TKP, kap. 11.

5.2.4.5 Zábradlové svodidlo
Na zábradlové svodidlo se přiměřeně použijí ustanovení čl. 5.3.3.1 a 5.3.3.3. Pro náhradu stávajícího zábradlového svodídla novým platí VL-4, TP 114 a TP pro jednotlivé typy svodidel.

5.2.5 Odvodnění mostů

5.2.5.1 Všeobecně
Pro návrh a provádění odvodnění při opravných pracích na mostech platí s dále uvedenými výjimkami TP 107.

5.2.5.2 Povrch vozovky
Opravné práce mají, pokud je to možné a účelné, zlepšit odtokové poměry na mostě. Při návrhu opravných prací je nutno posoudit, zda je technicky proveditelné a hospodárné uvést provozní sklon vozovky menší než 0,5 % nebo dochází-li na mostě k změně podélného sklonu, který zlepší odtokové poměry na mostě.

b) Stávající odvodňovací systém a možnost jeho úpravy. Pro rozhodnutí o případné změně odvodňovacího systému je nutné posoudit:

- stav současného odvodnění, jeho další životnost,
- rozměry stávajícího odvodnění (potrubí, žlabů apod.),
- hlíznost odvodňovačů,
- možnost zvětšení dimenzí jednotlivých částí odvodňovacího systému,
- stav a způsob odvodnění vozovky za mostem,
- způsob zaústění odvodnění.

c) Zaústění odvodňovacího systému. Při volbě, zda ponechat nebo navrhnout jiný způsob zaústění, musí být posouzena:

- kapacita současně zaústění,
- soulad s požadavky ochrany životního prostředí,
- soulad s celkovou koncepcí odvodnění komunikace převážně přes most,
TP 120 – Údržba, opravy a rekonstrukce betonových mostů PK

- poloha komunikací a železničních tratí pod mostem,
- současné a budoucí využití prostoru pod mostem,
- snadná údržba odvodňovacího systému.

d) Vliv současného způsobu odvodnění a jeho stavu na celkový stav mostu.

Není-li možné odvodnit izolaci svislými trubicemi se vzdáleností sběrných míst menší než 7 m, je možno navrhovat odvodnění pomocí šikmých trubiček nebo na ochraně izolace použít pružku drenážního betonu podle TKP, kap. 18, nebo zaústění odvodňovací trubičky do trubního odvodnění mostu. Využití trubiček je nutno provést tak, aby voda z nich stékající nenarušovala ostatní části mostu. Izolace musí být v nejnižším místě před mostními závěry řádně odvodněna. Pokud je to nezbytné (např. u elastických mostních závěrů) kombinaci drenáž ve vozovce a svislých (šikmých) trubiček.

5.2.5.4 Povrch uložného prahů

Úprava odvodnění uložného prahu krajních opětí a vnitřních podpěr je většinou spojena se zvedáním nosné konstrukce a/nebo výměnou mostních ložisek. Při opravných pracích, pokud je to z hlediska technického a ekonomického možné, je nutno upravit odvodnění povrchu uložných prahů. U opětí se při úpravě povrchu uložného prahů opěry provedé vyspádování směrem k závěrné zídce a vytvoření odvodňovacího žlabu podle VL-4.

5.2.5.5 Rub opěry

Jsou-li součástí opravných prací i práce za opěrou, je nutné navrhnout řádné odvodnění prostoru za rubem opěry. Podle uspořádání za opěrami (existence a uspořádání přechodové desky a závěrné zídky) se navrhní poloha drenáže a její žádné vyústění do svahového kužele průpichem křížem nebo jeho obokem (u širokých mostů i řídkem opěry). Způsobu a umístění drenáže být připouštěn způsob a materiál výplně prostoru za opěrou. Není-li dostatečným způsobem odvodnění rub opěry a voda z rubu opěry protéká pracovními spárami, případně méně kvalitním betonem opěry, a není-li možné a účelné odvodnění dodatečnou drenáží, je nutné rub opěry dodatečně odvodnit šikmými vrtými (ve sklonu 5 až 10%). Obnova izolace v celém rozsahu rubu opěry (křížel) se provádí, je-li to technicky a ekonomicky možné, navrhuje se většinou jen u závěrné zídky. Přímo se izolace rubu opěry přetahuje min. 150 mm pod nejnižší úroveň uložného prahu.

Je-li na stávajícím mostě navržena přechodová deska, provede se přetažení izolace min. 1 m na přechodovu desku. Přitom musí být vyřešeno i napojení a odvodnění styku přechodové desky a křídla mostu. Úpravy za opěrou se ve využitelném rozsahu provedou podle VL-4.

5.2.5.6 Komory a dutiny nosných konstrukcí

V rámci opravných prací musí být zajištěno spolehlivé odvodnění komor a dutin nosných konstrukcí v souladu s ČSN 73 6201 a TP 107. Při dodatečném vrtání odvodňovacích otvorů a osazování odvodňovacích trubiček musí být horní okraj trubičky umístěn níž než přilehlý povrch odvodňovacího povrchu komory a dutiny. Spodní okraj trubičky musí být upraven tak, aby případná voda z trubičky volně odkapávala pod most. Při zvolení polohy dodatečné
osazované trubičky musí být návrhem a provedením zajištěno, aby vrt pro odvodnění neporušil předpinací výztuž mostu.

5.2.5.7 Ostatní části mostu
Při opravných pracích je nutno zajistit řádné vyspádování povrchů ostatních částí mostu (např. zhlaví podpěr vyčnívajících přes okraj nosné konstrukce, paty kleneb apod.) v souladu s TP 107. Pokud není dodatečně možno provést příslušný sklon a řádné odvedení vody z plochy, je nutno provést jiná opatření zamezující vniknutí vody (zvláště vody obsahující chemické rozmrazovací látky) do konstrukce, např. vodotěsnými nátěry, oplechováním apod.

5.3 Mostní závěry

5.3.1 Všeobecně
Základním předpisem pro osazování mostních závěrů je TP 86.

5.3.2 Podklady pro rozhodnutí o způsobu opravy
Pro rozhodnutí o způsobu opravy mostních závěrů musí být uváženo především:

a) celkový stav mostního závěru,
b) geometrická přesnost jeho osazení a možnost provedení vozovky v jeho okolí tak, aby byl přechod mezi závěrem a vozovkou v souladu s příslušnými předpisy, zvláště pak TP 86,
c) vodotěsnost těsněného mostního závěru, spolehlivé odvodnění netěsněného závěru,
d) vodotěsnost napojení izolace na mostní závěru,
e) spolehlivá funkce kotvení a kotevního bloku mostního závěru,
f) funkce roznášecího mechanizmu,
g) funkce závěru v extrémních teplotních podmínkách (nastavení dilatační spáry),
h) odvodnění mostního závěru.

5.3.3 Výměna mostního závěru
Při návrhu nového mostního závěru musí být proveden nový výpočet všech dilatačních pohybů podle TP 86. Při stanovení vlivů smršťování a dotvarování je nutno posoudit skutečnou velikost smršťování a dotvarování při přestavbě nosné konstrukce vzhledem ke stáří konstrukce či změně statického systému mostu. Volba typu mostního závěru se řídí TP 86, přitom se navíc přihlíží i ke snadnosti úpravy nosné konstrukce/opěry pro jiný než původní typ závěru z hlediska požadované šířky dilatační spáry, přístupu, odvodnění závěru apod.

5.3.4 Elastický mostní závěr
Elastický mostní závěr se navrhuje podle TKP, kap. 23 , TP 80 a TP 86. Při rozhodnutí o opravě či výměně elastického závěru se musí uvážit zejména:

a) vodotěsnost závěru,
b) deformace povrchu závěru,
c) trhliny v závěru samotném nebo ve styku závěr/vozovka.
5.4 Mostní ložiska

5.4.1 Všeobecně

Mostní ložiska zajišťují správnou statickou funkci mostu, jejich špatný stav může ovlivnit namáhání spodní stavby a nosné konstrukce a vést ke snížení životnosti mostu. Proto je nutné zjišťovat stavu ložisek a návrhu opravných prací věnovat příslušnou pozornost.

Pro jednotlivé typy ložisek platí ČSN EN 1337 a TKP, kap. 22, typy uložení nosných konstrukcí v TP 160, TP 173 a TP 75.

Základním hlediskem pro návrh opravných prací je výsledek prohlídky a měření ložisek, kdy má být prohlédnuto a zaznamenáno obzvláště:

a) poškození ložiska trhlinami, nesprávnou polohou, nesprávným nastavením a nadměrným posunem a deformací,
b) stav styčných ploch a kotvení ložisek,
c) nastavení ložiska ve vztahu k teplotě konstrukce,
d) stav protikorozní ochrany,
e) stav kluzných a valivých ploch,
f) viditelné poruchy konstrukce v těsné blízkosti ložiska.

Podle stavu ložisek se rozhoduje pøi návrhu opravných prací o některé z následujících variant opravných prací:

a) výmìna ložiska,
b) oprava ložiska,
c) oprava uložení ložiska,
d) rektifikace ložiska.

5.4.2 Výmìna ložiska

Při výměně ložiska musí být vždy prokázáno, že nové ložisko (stejného či jiného typu) je ze statického a dispozičního hlediska pro spodní stavbu a nosnou konstrukci vhodné. Umístění a počet ložisek lze v odvodněných případech při výměně ložisek zmìnit, vždy musí být staticky prokázáno, že při novém umístění ložisek nejsou v žádné části mostu překročena příslušná napìtí.

Ze statického hlediska se posoudí, že síly od tøení v kluzných či valivých částech ložisek, vratné síly a momenty elastomerových částí ložisek nezpùsobí překroèení příslušných napìtí ve spodní stavbì (pøíp. nosná konstrukce).

Z dispozičního hlediska musí být prokázáno, že nové ložisko splòuje nároky na umístìní podle ČSN 73 6201. Umístìní zvedacích prostupkù viz čl. 5.5.3.8. Nutnost zvednutí nosné konstrukce a zpùsob jejího zvednutí musí být posouzeny i z jiných hledisek, nez jì výmìna ložisek, napø. zvednutí konstrukce pro umožnìní pøístupu k ßelùm nosné konstrukce, závìrným zìdkàm pro jejì opravu a ochranu (viz čl. 5.5.3.8),

5.4.3 Oprava ložiska

Možnost opravy ložiska je bez zvednutí nosné konstrukce omezená. Je-li oprava ložiska možná pouze pøi zvednutí konstrukce, musí být posouzena i varianta výmìny ložiska, a to z hlediska hospodárnosti s přihlednutím k nákladùm na výmìnu ložiska, provozním nákladùm po opravných pracích na mostì, další funkci a životnosti ložiska.

5.4.4 Oprava uložení ložiska

Viz čl. 5.6.3.4.

5.4.5 Rektifikace ložiska

Rektifikace ložiska se provádí, jestliže:

a) je ložisko jako celek v nesprávné poloze,
b) nastavení pohyblivého ložiska je takové, že je důvodné podezření, že pro mezní normové účinky (teplota, smršťování) dojde k překročení krajní meze nastavení pro daný typ ložiska. Pro rektifikaci je nutné zvednutí nosné konstrukce, výška zvednutí musí být taková, aby mohla být rektifikace řádně provedena. Ložisko musí být nastaveno v souladu s ČSN 73 6201, ČSN EN 1337 a TKP kap. 22. V případě, že nastavení podle výše uvedených předpisů není možné pro stávající typ ložiska provést, je nutné ložisko vyměnit.

5.5 Nosná konstrukce

5.5.1 Všeobecně
Tato kapitola pojednává o návrhu způsobu opravných prací nosné konstrukce jako konstrukční části mostu. Zásadami a metodami týkající se závad betonu a korozí betonářské výztuže se zabývá příloha A těchto TP.

5.5.2 Podklady pro rozhodnutí o způsobu opravných prací
Základními podklady pro rozhodnutí o způsobu opravy nosné konstrukce jsou diagnostický průzkum a statický výpočet zatížitelnosti mostu, doplněném ekonomickým posouzení variant. Při diagnostickém průzkumu se postupuje dle TP 72, při tom se obzvláště zjišťuje:

a) stav betonu,
b) stav betonářské, příp. předpínačí výztuže,
c) tloušťka krycí vrstvy betonu (příp. předpisy, podle kterých byla tloušťka krycí vrstvy stanovena),
d) zatékání do mostu nebo hromadění vody v některých částech mostu,
e) stav nosné konstrukce v místě uložení,
f) stav kotevních oblastí u předpínačů konstrukcí,
g) stav spár mezi jednotlivými částmi prefabricované konstrukce, mezi prefabricovanou a monolitickou části, stav konstrukčních spár segmentových konstrukcí,
h) stav kloubů v nosné konstrukci,
i) vliv stavu ostatních částí mostu na stav nosné konstrukce.

Z dokumentace skutečného provedení se zjišťuje a pro úvahy o způsobu opravných prací bere do úvahy:

a) zda je nosná konstrukce monolitická nebo prefabricovaná, u prefabricovaných konstrukcí typ použitého prefabrikátu,
b) statický systém nosné konstrukce, případně mostu jako celku,
c) způsob uložení nosné konstrukce,
d) rozmístění a tvar dilatačních a pracovních spár,
e) tvar (tvarová složitost) nosné konstrukce mostu,
f) tvar a přístupnost dutin (komor) nosné konstrukce,
g) způsob odvodnění dutin (komor) nebo jiných částí mostu, kde je nebezpečí hromadění srážkové vody nebo vody vytekající z odvodňovacího systému mostu,
h) přístupnost všech částí nosné konstrukce (zejména spodního lice mostu),
i) případně další možné vlivy.

V případě, že dokumentace není k dispozici, je nutné ji ve zjednodušené formě, zpravidla v rámci diagnostického průzkumu vyhotovit. Současně je nutné jako podklad zajistit výsledky hlavní (mimořádné), příp. běžné prohlídky mostu.

5.5.3 Opravné práce
5.5.3.1 Všeobecně
V tomto článku jsou popsány základní metody opravných prací na nosné konstrukci. K dosažení cíle opravných prací na mostě je možno tyto způsoby účelně kombinovat. Dále
TP 120 – Údržba, opravy a rekonstrukce betonových mostů PK

uvedené způsoby využívají metody oprav a ochrany betonových konstrukcí popsané v příloze A.

5.5.3.2 Lokální oprava

Lokální oprava se pro opravné práce na mostě navrhne, je-li poškození mostu pouze v omezené ploše nosné konstrukce (např. v okolí odvodňovačů, mostních závěrů).

Lokální oprava mostu spočívá v opravných metodách popsaných v příloze A. aplikovaných na část povrchu nosné konstrukce. Výběr míst pro lokální opravu se provádí na základě diagnostického průzkumu mostu a zpřesňuje během provádění prací.

Lokální opravy je možné provádět i v rámci stavební údržby.

5.5.3.3 Celoplošná oprava povrchu nosné konstrukce

Celoplošná oprava povrchu nosné konstrukce se provede především na těch konstrukcích nebo jejich souvislých částech (např. spodní líc nosné konstrukce), kde je mimo jiné nevyhovující tloušťka krycí vrstvy. Lokální a celoplošné opravy se vzájemně kombinují, celoplošná oprava pak je pak většinou finální operací po provedení lokálních oprav.

Při rozhodování o použití celoplošné opravy musí být vztato do úvahy celkový stav nosné konstrukce, především hloubka neutralizace betonu ve vztahu k polozu betonářské, příp. předpínací výzvu, stupeň a hloubka napadení nosné konstrukce chloridy.

Od celoplošné opravy může být upuštěno, jsou-li pro to technické důvody a je-li to zdůvodněno ekonomickými důvody.

5.5.3.4 Vyrovnávací vrstva

5.5.3.4.1 Všeobecně

Vyrovnávací vrstva se během opravných prací navrhuje v těchto případech:

a) Podklad pod izolaci nesplňuje ustanovení ČSN 73 6242.

b) Je nutné změnit sklon mostovky a vytvořit jiný systém odvodnění mostovky (např. při změně odvodnění mostovky odvodňované okapním plechem na okraj mostu na odvodnění před obrubníkem pomocí odvodňovacích trubic).

Vyrovnávací vrstva, pokud se nenavrhne splňující deska, se navrhne přednostně z betonu. Jiné hmoty (speciální polymerní betony nebo malty, polymerní hydraulické cementové betony nebo malty), než je beton, se používají tam, kde není z důvodů nutnosti změny návrhu nebo ze statických důvodů možno navrhnout vyrovnávací vrstvu z betonu.

5.5.3.4.2 Vyrovnávací vrstva z betonu

Navrhne se podle TKP, kap. 18, příp. ČSN EN 206-1, nejméně z betonu se svp XF1 v tloušťce nejméně 60 mm.

Pro návrh a provádění betonové vyrovnávací vrstvy platí ČSN 73 6242.

5.5.3.4.3 Vyrovnávací vrstva z jiných materiálů

Tloušťka vyrovnávací vrstvy z jiných materiálů musí být minimálně taková, jaká odpovídá vlastnostem příslušné hmoty. Při návrhu vyrovnávací vrstvy se její tloušťky z jiných materiálů je nutné posoudit i kritérium hospodárnosti. Vyrovnávací vrstvy z jiných materiálů je možno použít jako lokální opravu nebo je kombinovat s vrstvou betonu. Podmínky použití kombinace dvou materiálů musí být stanoveny v dokumentaci opravných prací.

Použité hmoty musí splňovat požadavky tabulky ČSN 73 6242, případně příslušná ustanovení TP 121.

5.5.3.5 Zesílení spřaženou železobetonovou deskou

Spřažená železobetonová deska (zpravidla minimální tloušťky 120 mm) se při opravných pracích navrhuje v těch případech, kdy most nemá plnou zatížitelnost podle ČSN 73 6222 a je možné provedením této desky zatížitelnost zvýšit. Je nutné pečlivě posoudit, zda stávající nosná konstrukce má požadovanou kvalitu betonu a způsob vyztužení, aby bylo možné spřažení provést a vedlo k zesílení nosné konstrukce mostu. Spřažení se u opravných prací na mostě používá obvykle u prostých nosníků nebo desek. Spřaženou deskou je možno navrhovat i u vícepolových mostů složených z prostých polí, potom se může deska navrhovat pro každé pole zvlášť nebo jako
Tento dokument je obsahově identický s oficiální tiskovou verzí. Byl vytvořen v systému TP online a v žádném případě nenahrazuje tiskovou verzi.

TP 120 – Údržba, opravy a rekonstrukce betonových mostů PK

Deska spojí štěrbinu a propustí nad podporu s vrubovým kloubem. Tomuto uspořádání musí však odpovídat uspořádání ložisek (viz čl. 5.4).

Návrh a výpočet nosné konstrukce se provádí podle příslušných ČSN a ČSN EN. Zvláštní pozornost se věnuje vlivu smrštování, případné snížení tohoto vlivu na napjatost konstrukce vhodným betonážním postupem nebo návrhem a ošetřením čerstvého betonu. Při návrhu spřažení a spřažující desky se musí posoudit unosnost rozhodujících průřezů stávající betonové konstrukce. Proto je nutno spolehlivým způsobem znát tvar betonového průřezu, kvalitu (známkov) betonu, vyztužení betonášskou výztuží včetně znalostí kvalitativních parametrů betonášské výztuže, u konstrukcí z předpokládaného betonu i vedení předpínací výztuže a její kvalitativní parametry.

Pro zajištění spřažení se zpravidla používá:

a) Betonážní výztuž. Vlepuje se do otvorů vrtaných v původní konstrukci, nebo vhodným způsobem přivažuje k výztuži původní konstrukce, je-li možné snadným způsobem odstranit krycí vrstvu původní konstrukce. Tvarově může být výztuž uzpůsobena do tvaru uzavřených třmínek nebo trnů. Pro vrtání otvorů a lepení výztuže se využívají ta místa původní konstrukce, kde je vrtání nejsnadnější a kde je nejmenší riziko poškození předpínací výztuže (např. podélé spáry z monolitického betonu mezi prefabrikáty), dále do části konstrukcí, kde je tloušťka betonu taková, že poskytuje bezpečný prostor pro vytvoření vrtu.

b) Ocelové kozlíky. Osazují se do vrtaných vrtaných otvorů. Pro použití externí lepené výztuže platí TP 73, TP 74, TP 214.

5.5.3.6 Změna statického systému nosné konstrukce/mostu

Změna statického systému stávající nosné konstrukce/nebo mostu jako celku představuje náročný inženýrský zápas do mostu přesahující rámec těchto TP a je řešena individuálním návrhem.

5.5.3.7 Zesílení přidáním betonážské výztuže, předpětím nebo externí lepenou výztuží

Navrhování při změně systému nosné konstrukce, při kterých je potřeba zesílení nosné betonážské výztuže nebo návrh zachovat konstrukční výztuží za novou. Zesílení předpětí se navrhuje tehdy, je-li možné z hlediska celkového tohoto betonážské konstrukce pro zesílení použít volnou předpínací výztuž.

Tyto způsoby opravných prací je možné použít jen na základě podrobného statického výpočtu, který prokáže, že přidání nebo návrh zachovat betonážské (předpínací) výztuží jsou možné vzhledem k celkovému postupu opravných prací (velikosti zatištění působící na původní průřez a zatištění působící na průřez s přidanou nebo nahrazenou výztuží). Pro použití externí lepené výztuže platí TP 73, TP 74, TP 214.

5.5.3.8 Zvedání nosné konstrukce

5.5.3.8.1 Všeobecně

Zvedání je možné navrhat jen v nejnutnějších případech po pečlivém zvážení všech technických možností a posouzení hospodárnost tohoto řešení ve vztahu k dalšímu možným řešením (výměna nosné konstrukce).

Zvedání nosné konstrukce se jako součást opravných prací navrhuje, je-li potřeba:

a) Opravit uložení nosné konstrukce, kde je nedostatek místa mezi horním povrchem úložného plochu a podhledem nosné konstrukce pro řádnou opravu.

b) Opravit čelo nosné konstrukce u mostů, kde není dostatek místa mezi závěrnou zdítkou (přechodovou deskou) a čelem nosné konstrukce nebo jednotlivými poli (vicepolové mosty). To je nutné především pro předpětá konstrukce, resp. kotevní oblast těchto konstrukcí. U jednoplovných mostů se závěrnou zdítkou, kde je nutná pouze oprava čela, je nutno uvážit, zda není technicky přijatelné a ekonomicky výhodnější provést opravu čel bez zvednutí, ale s demolíci a následným novým vybetonováním závěrné zdítky.

c) Upravit nivelu mostu a není možné to provést jiným způsobem.

d) Vyměnit ložiska.
TP 120 – Údržba, opravy a rekonstrukce betonových mostů PK

Podle účelu, pro který se nosná konstrukce zvedá, se v dokumentaci pro stavební povolení musí stanovit výška zdvihu nosné konstrukce.

5.5.3.8.2 Statický výpočet
Pro příslušné zvedací zařízení a umístění podpěr (táhel) zvedacího zařízení musí být staticky prokázáno, že nebudou během zvedání v nosné konstrukce a spodní stavbě překročena v žádném průřezu příslušná napětí a dodrženy stupné bezpečnosti. Přítom je nutno při stanovení dovoleného namáhání vzít v úvahu skutečně zjištěné pevnosti betonu a použité betonářské oceli. Je nutné uvažovat se skutečným stavebním stavem příslušné části mostu. Není-li to možné provést přesněji, použije pro snížení dovoleného namáhání součinitel stavebního stavu mostu uvedený v mostním listě, pokud byla hlavní (mimořádná) prohlídka provedena v době kratší než 36 měsíců před zahájením zvedání.

Předpokládají-li se během provizorního podepření dilatační pohyby nosné konstrukce, je nutno provizorní uložení provést tak, aby byly tyto pohyby umožněny, např. vložením kluzných desek.

5.5.3.8.3 Osazení na ložiska
Definitivní osazení na ložiska musí být provedeno tak, aby v konstrukci nevznikla napětí přemožená betonovým právě.

5.5.3.9 Rozšíření nosné konstrukce
Při nutnosti rozšířit stávající konstrukci musí být zřejmé, že původní konstrukce je v takovém stavu, že je rozšíření technicky a staticky možné a ekonomicky výhodnější než vytvoření zcela nové nosné konstrukce. Základní možnosti rozšíření mostu jsou tyto:

b) Nosná konstrukce bude rozšířena části těsně přiléhající k původní nosné konstrukci, ale s původní konstrukcí nespolupůsobí, vozovka je přímo společná pro obě části. Tento způsob se může navrhnut za předpokladu, že není možné spojení obou částí konstrukcí. Ve vozovce je nutné s hledi na očekávané pohyby provést příslušná opatření. Nová část nosné konstrukce je přítom podepřena na původní, rozšířené nebo nové spodní stavbě. U přímo pojížděné mostovky se tento způsob rozšíření využije ojediněle pouze u mostů s malou intenzitou provozu. Je vhodný pro mosty přespané.
c) Nosná konstrukce bude rozšířena konstrukcí uloženou stejně jako původní, ale obě konstrukce budou vzájemně pevně propojeny nebo k propojení obou konstrukcí může sloužit spražená deska.
Při tomto způsobu rozšíření nosné konstrukce musí být statickým výpočtem prokázáno, že původní část nosné konstrukce přenesu příslušná zatižení včetně vlivů od spojení s novou částí konstrukce.

K uložení nosné konstrukce slouží původní nebo rozšířená spodní stavba. Je-li nová část nosné konstrukce uložena na zcela nové spodní stavbě, je nutné nosnou konstrukci posoudit i na vliv rozdilného sedání původní a nové spodní stavby mostu.

5.5.3.10 Výměna nosné konstrukce
Nosná konstrukce se vyměňuje, jestliže:
a) Požadovanou zatížitelnost mostu nelze na stávající konstrukci dosáhnout a/nebo je to neekonomické.
b) Z ekonomického posouzení je patrné, že je vhodnější provést výměnu nosné konstrukce.
c) Nosná konstrukce mostu nevyhovuje požadovaným směrovým a výškovým parametřům přilehlé komunikace a není možné nosnou konstrukci z technického a/nebo ekonomického důvodu přemisťit do požadované polohy.

5.5.3.11 Výměna části nosné konstrukce
Výměna části nosné konstrukce se navrhuje například:

a) U nosných konstrukcí z podélných prefabrikátů, kdy je nutno vyměnit pouze určitý omezený počet nosníků (např. krajní nosníky) a odstranovaný nosník je možno nahradit nosníkem stejného či podobného typu nebo vybetonovat nosník na jeho místě.

b) U mostů skládajících se z jednotlivých dilatačních celků (prosté nosníky, vložená pole), kdy postačí výměna určité části.

5.6 Spodní stavba a založení

5.6.1 Všeobecně

Tato kapitola pojednává o návrhu způsobu opravných prací spodní stavby a založení mostu jako konstrukční části mostu. Zásadami a metodami týkající se závad betonu a koroze betonářské výztuže se zabývá příloha A těchto TP.

5.6.2 Podklady pro rozhodnutí o způsobu opravných prací

Základními podklady pro rozhodnutí o způsobu opravy nosné konstrukce jsou diagnostický průzkum a statický výpočet zatížitelnosti mostu, doplněné ekonomickým posouzení variant. Při diagnostickém průzkumu se postupuje dle TP 72.

Při diagnostickém průzkumu se především zjišťuje:

a) stav betonu,
b) stav betonářské, příp. předpínací výztuže,
c) tloušťka krycí vrstvy betonu (předpisy, podle kterých byla tloušťka krycí vrstvy stanovena),
d) zatékání na některé části spodní stavby, příp. hromadění vody, a to jak od srážkové vody, tak vody vytékající z odvodňovačů,
e) protékání opěr (zatékání na úložné prahy), stav odvodnění rubu opěr,
f) stav kloubů,
g) přítomnost trhlin, zvláště těch ukazujících na deformace a sedání jednotlivých částí spodní stavby,
h) deformace spodní stavby,
i) stav pracovních a dilatačních spár, vzájemný posun různých částí spodní stavby (např. opěr a křídel),
j) stav kotevních oblastí u předpíjatých částí spodní stavby,
k) stav spár mezi jednotlivými díly prefabrikované spodní stavby, stav výplně spár (např. kalichů prefabrikovaných konstrukcí),
l) přítomnost a stav ochrany spodní stavby proti nárazu vozidel,
m) posouzení viditelných částí založení,
n) stav ochrany založení a spodní stavby (záhozy, štětové stěny, ledolamy) proti podemletí.

Při rozhodování o způsobu opravných prací se z dokumentace skutečného provedení zjišťuje:

a) materiál spodní stavby a založení (monolitická nebo prefabrikovaná, prostý nebo železový beton,
příp. předpíjatý beton obložený kamenem),
b) typ vnitřních podpěr a krajních opěr,
c) statický systém spodní stavby,
d) rozmístění a tvar dilatačních a pracovních spár,
e) tvarová složitost spodní stavby, možnost hromadně srážkové vody na plochách spodní stavby,
f) přístupnost spodní stavby,
g) blízkost spodní stavby u provozovaných komunikací (ostřík rozmrazovacích chemických látek),
h) výška velkých vod u přemostovaných vodotečí, jejich možný vliv na spodní stavbu,
i) celkový stav koryta vodoteče v blízkosti spodní stavby mostu,
j) způsob založení mostu.

Dalším podkladem je dokumentace skutečného provedení stavby, v případě, že dokumentace není k dispozici, je nutné ji ve zjednodušené formě, zpravidla v rámci diagnostického průzkumu, vyhotovit.

Současně je nutné jako podklad zajistit výsledky hlavní (mimořádné), příp. běžné prohlídky mostu.
Je-li to nutné, provedou se pro rozhodnutí o způsobu opravných prací u mostů přes vodoteče příslušné hydrotechnické výpočty.

Zjištění stavu založení je obtížné, na jeho stav lze usuzovat nepřímo podle stavu spodní stavby mostu, celkových deformací a sedání. Sondy nebo vrty se provedou jen tehdy, zjistí-li se sedání a deformace spodní stavby nebo je-li to nutné pro zjištění geotechnických vlastností základové půdy pro rozšíření základů.

Metody ochrany a oprav založení mostu nejsou předmětem těchto TP a budoušeny individuálně.

5.6.3 Opravné práce

5.6.3.1 Všeobecně
V tomto článku jsou popsány základní metody opravných prací na spodní stavbě a založení. K dosažení cile opravných prací na mostě je možno tyto způsoby účelně kombinovat. Dále uvedené způsoby využívají metody oprav a ochrany betonových konstrukcí popsané v příloze A těchto TP.

5.6.3.2 Lokální oprava
Platí podobná ustanovení jako pro lokální opravu nosné konstrukce - viz čl. 5.5.3.2. Součástí lokální opravy může být oprava či zřízení odvodnění rubu opěr.

5.6.3.3 Celoplošná oprava
Platí obdobná ustanovení jako pro celoplošnou opravu nosné konstrukce - viz čl. 5.5.3.3. Zvláštním případem celoplošné opravy spodní stavby je její přibetonování.

5.6.3.4 Přibetonování - zvětšení rozměru spodní stavby
Přibetonování spodní stavby se používá tehdy, je-li to možné z prostorových důvodů (nezasáhne-li přibetonování do průjezdního nebo průchozího prostoru přemostované pozemní komunikace nebo železniční tratě). Navrhuje se zejména:

a) Není-li podklad určité plochy spodní stavby vhodný pro nanášení jiných hmot, než je beton.
b) Spodní stavba není dostatečně únosná (viz čl. 5.6.3.7).
Přibetonovaná část musí být řádně spojena s původní částí spodní stavby. Povrch původní spodní stavby musí být zbaven znehodnoceného betonu. Podle tloušťky odstraňené vrstvy a polohy betonářské výztuže, je možné výztuž přibetonování:
a) zavázat do původní výztuže,
b) přivařit pomocí distančních prvků k původní výztuži,
c) spojit s původním betonem pomocí trnů,
d) případně spojit jiným vhodným postupem.

Jsou-li pro přibetonování statické důvody, musí být statickým výpočtem prokázáno, že je zajištěn přenos sil z nosné konstrukce, jak do původní, tak do přibetonované části průřezu a
Tento dokument je obsahově identický s oficiální tiskovou verzí. Byl vytvořen v systému TP online a v žádném případě nenahrazuje tiskovou verzi.

TP 120 – Údržba, opravy a rekonstrukce betonových mostů PK

že v souladu se zvoleným postupem nejsou překročena dovolená napětí v obou částech betonového průřezu. Přitom je nutné posoudit i vliv smršťování a dotvarování betonu.

5.6.3.5 Oprava dilatační spáry
Pro stanovení způsobu opravy dilatační spáry je nutno posoudit možné pohyby v dilatační spáře a znát charakter jejího porušení. Oprava zahrnuje:

a) vyčištění spáry od původní výplně,
b) odstranění znehodnoceného betonu okraje spáry,
c) lokální oprava betonu na okrajích spáry (viz čl. 5.6.3.2) s tvarováním (zkosením) okraje podle způsobu následného těsnění spáry,
d) nové těsnění spáry v závislosti na jejím charakteru a šířce.

Pro stanovení způsobu těsnění spáry je možno využít VL-4, VL-0.

5.6.3.6 Oprava trhliny ve spodní stavbě

Masivní části spodní stavby, především opěr, křídel a zdí, mohou vyžadovat opravy trhlin. Pro stanovení správného postupu opravy trhlin je třeba znát:

a) přičiny vzniku trhliny,
b) tvar, šířku a hloubku trhliny, zda se jedná o trhliny povrchové nebo dělicí,
c) stav okrajů trhliny,
d) stav a kvalitu betonu v těsném okolí trhliny,
e) vlhkost trhliny a jejích okrajů v klasifikaci podle tab. 2 TP 88.

Při návrhu opravných prací trhlin se postupuje dle TP 88.

5.6.3.7 Zesílení přidáním betonářské výztuže nebo předpětím

Platí obdobná ustanovení jako pro zesílení nosné konstrukce. Svislé konstrukce, především sloup a konstrukce zasouvané se zasouvají přidáním vrstvy betonu se svislou a třímkovou betonářskou výztuží (příp. ovinutím u kruhových sloupů). U tohoto způsobu opravných prací musí být zajištěno spolupůsobení původního průřezu s přibetonovaným a přenesení příslušného zatížení rozšířeným průřezem. Zesílení spodní stavby je nutné provádět při zvednutí nosné konstrukce. Statickým výpočtem musí být prokázána plná unosnost spodní stavby ve všech rozhodujících průřezech.

Přibetonování musí být realizováno betonem minimálně takové značky, jaká je stanovena pro daný prvek a dané prostředí viz. TKP, kap. 18 a ČSN EN 206-1.

Statickým výpočtem musí být prokázáno, že je zajištěno přenos síl z nosné konstrukce jak do původní, tak do přibetonované části průřezu a že v souladu se zvoleným postupem nejsou překročena dovolená namáhání v obou částech betonového průřezu. Přitom je nutné posoudit i vliv smršťování a dotvarování betonu.

5.6.3.8 Rozšíření spodní stavby

Při nutnosti provést rozšíření spodní stavby musí být uváženo, že je možné použít některý z níže popsaných způsobů rozšíření spodní stavby a že to umožňuje dispoziční řešení stávající spodní stavby. Stávající spodní stavba má být v takovém stavu, aby při přiměřené údržbě byla životnost obou částí spodní stavby přibližně shodná. Podle umístění mostu musí být posouzena i estetika navrženého rozšíření spodní stavby. Variantou k rozšíření spodní stavby je vybudování zcela nové spodní stavby, příp. s využitím založení mostu.

Rozšířování spodní stavby a nosné konstrukce musí být vzájemně koordinováno. Rozšíření spodní stavby je možno provést:

a) Rozšířením spodní stavby bez rozšíření základů. Přitom musí být staticky prokázáno, že stávající založení vyhovuje i novému zatížení a musí být prokázáno, že sednutí od nového zatížení je v přiměřeném rozsahu ve vztahu k typu nosné konstrukce a požadavku na nerovnoměrné sedání (u staticky neurčitých konstrukcí) apod.

b) Rozšíření spodní stavby a založení se spojením se stávající spodní stavbou a založením. Posouzeno musí být, zda je možné provést spojení obou konstrukcí a účinky, které vzniknou ve stávající a nové konstrukci a spojovacích částí od všech zatížení včetně rozdílného sedání původní a nově části založení.
TP 120 – Údržba, opravy a rekonstrukce betonových mostů PK

c) Rozšíření spodní stavby a založení odděleně od stávající spodní stavby a založení.

5.6.3.9 Výměna spodní stavby
K úplné výměně dochází zpravidla jen u vnitřních podpěr (subtilních částí spodní stavby jako jsou sloupy), kde je posouzením variant a ekonomickým porovnáním zjištěno, že není možné stávající spodní stavbu opravit anebo to není hospodárné.
Při výměně spodní stavby s ponecháním nosné konstrukce musí být pečlivě volen způsob a místo provizorního podepření nosné konstrukce, možné sedání provizorního podepření včetně jeho časového průběhu během uvažované doby provizorního podepření, zvláště je-li provizorní podepření realizováno mimo stávající základy. Dále pak vliv provizorního podepření na napjatost nosné konstrukce. Stejně tak musí být posouzen vliv sedání nové spodní stavby (zvláště při zásazích do založení) na nosnou konstrukci po uložení nosné konstrukce na novou spodní stavbu. V případě nutnosti rektifikace nosné konstrukce musí být na spodní stavbě určena místa pro umístění zvedacích prostředků a předem posouzeny vlivy od jejich reakcí.

5.6.3.10 Vnější ochrana spodní stavby
5.6.3.10.1 Všeobecně
Součástí návrhu opravných prací je i návrh opravných prací na ochraně spodní stavby mostu a pro bezprostřední okolí mostu majícího přímou návaznost na mostní objekt, například:
a) odvodnění (skluzů) přemostované komunikace před a za mostem, včetně vývařiště a jímech,
b) odvodnění prostoru (komunikace) pod mostem,
c) zaústění odvodňovačů,
d) ochrany mostu proti podechlém (štětovnice, opevnění, zákyzy, dlažby),
e) zpevněných ploch, zvláště svahů a svahových kuželů,
f) ledolamů,
g) protinárazových zábran,
h) silničních záchytných systémů (svodidel),
i) schodiště.

5.6.3.10.2 Odvodnění
Při opravných pracích má být zajištěno řádné fungování odvodnění pozemní komunikace před a za mostem vytvořením nebo opravou stávajících skluzů, zpevněním ploch podél vozovky přiléhajících ke konci křídl a zajišťujícím zaústění vody stékající z vozovky. Dále pak zajištěním odtoku vody z těchto skluzů do příkopů, vodoteči, kanalizace nebo jiným vhodným způsobem.

5.6.3.10.3 Zpevnění ploch, svahů a kuželů
Při opravných pracích má být navržena oprava, zařízení nebo obnovení zpevnění ploch pod mostem, pod konzolami křídel apod. Je vhodné provést na styku svahu a křídla zpevnění v šířce min. 0,5 m, pokud podél křídl nevede revizní schodiště. Pokud je to proveditelné, má se u mostů s obsypanými opěrami upravit zpevnění pod mostem tak, aby byl zajištěn přístup k ložiskům podle ČSN 73 6201.

5.6.3.10.4 Revizní schodiště
Revizní schodiště se v rámci opravných prací navrhuje na požadavek objednatele (správce) ve smyslu ČSN 73 6201.

5.6.3.10.5 Svodidla pozemní komunikace v podjezdu
Podél pozemní komunikace se v rámci opravných prací na mostě přes pozemní komunikaci navrhnou svodidla ve smyslu ČSN 73 6201, TP 114 a TP příslušných typů svodidel.
TP 120 – Údržba, opravy a rekonstrukce betonových mostů PK

5.7 Ostatní části mostu

Při návrhu opravných prací je nutné navrhnout způsob opravy částí mostů souvisejících se zařízeními ostatních správ (chráničky, upevnění stěn přecházející po mostě, kotvení stožáru veřejného osvětlení, trakčního vedení apod.). Zároveň musí být navržen způsob opravy, zřízení nebo znovuzřízení protidotykové zábrany a ochrany proti účinkům výfukových plynů u mostů pozemních komunikací vedoucích přes železniční trať ve smyslu ČSN 73 6201 a ČSN 73 6223 a kotvení závěsů trakčního vedení.

6. BEZPEČNOST A OCHRANA ZDRAVÍ PŘI PRÁCI

Zajištění bezpečnosti a ochrany zdraví při práci (BOZP) a požární ochrany (PO) se řídí těmito právními předpisy:

- 262/2006 Sb. zákoník práce v platném znění
- 309/2006 Sb. zákon o zajištění ve výška nebo nad volnou hloubkou
- 48/1982 Sb. vyhláška, k zajištění bezpečnosti práce a technických zařízení
- 101/2005 Sb. nařízení vlády o podrobnějších požadavcích na pracoviště a pracovní prostředí
- 133/1985 Sb. zákon o požární ochraně
- 133/1985 Sb. zákon o ochraně veřejného zdraví
- dokument Identifikace a hodnocení rizik pro danou činnost nebo staveniště
- 258/2000 Sb. zákon o ochraně pracovních podmínek
- 262/2006 Sb. zákoník práce v platném znění
- 309/2006 Sb. zákon o zajištění ve výška nebo nad volnou hloubkou
- 48/1982 Sb. vyhláška, k zajištění bezpečnosti práce a technických zařízení
- 101/2005 Sb. nařízení vlády o podrobnějších požadavcích na pracoviště a pracovní prostředí
- 133/1985 Sb. zákon o požární ochraně
- 133/1985 Sb. zákon o ochraně veřejného zdraví
- dokument Identifikace a hodnocení rizik pro danou činnost nebo staveniště

Stavební práce včetně obsluhy technického zařízení mohou provádět osoby starší 18-ti let, odborně a zdravotně způsobilé.

Činnost musí být organizována vedoucím a práce mohou být zahájeny a vykonávány pouze tehdy nedochází-li k vzájemnému ohrožení a není-li ohroženo zdraví osob.

Každý pracovník, který se podílí na činnosti při provádění údržby a oprav musí být prokazatelně seznámen s technickým prováděcím předpisem, s riziky na pracovišti, s vlastnostmi nebezpečných látek a s návody na obsluhu používaného zařízení. Všichni pracovníci musí být chráněni před pracovními a zdravotními riziky přidělenými účinnými osobními prostředky. Dle požadavku Nařízení vlády č. 495/2001 Sb. musí mít všichni pracovníci na stavbě ochranou příbuzu a výstražnou vestu s dostatečně výrazným reflexním značením.

Při práci pro objednatele Ředitelství silnic a dálnic ČR musí být všichni pracovníci seznámeni se Směrnicí generálního ředitelé RSD ČR č. 4/2007 – Pravidla bezpečnosti práce na dálnicích a silnicích.

Pracovníci musí být chránění před oddechu částicemi, při práci ve výšce nebo nad vlnou hloubku musí být přednostně uplatněna kolektivní ochrana pracovníků (zábrrany), před osobními ochrannými prostředky pro práci ve výšce a nad vlnou hloubkou Demontážní a bourací práce nad sebou jsou zakázány.

Při práci v prostoroch nebo místech s nebezpečím vzniku požáru (svařování, pálení, broušení atd.) je nutné vystavit příkaz na práci dle vyhlášky c. 87/2000 Sb. Zvláštní podmínky pro bezpečnost a hygienu práce je povinen zhotovit zpracovat zejména pro technologické operace, které se týkají přípravy povrchu (odsekávání, frézování, broušení, tryskání pískem nebo vysokotlakým vodním paprskem).

Na staveništi musí být k dispozici technické nebo bezpečnostní listy pro všechny typy používaných stavebních hmot s uvedením jejich zdravotní bezpečnosti, resp. postupu při kontaminaci očí či pokožky nebo vdechnutí.

Na pracovišti musí být prostředky pro poskytování první pomoci a ruční hasicí přístroje.
7. Související normy a předpisy

ČSN EN 1504-1 až 10 Výrobky a systémy pro ochranu a opravy betonových konstrukcí
ČSN EN 206-1 Beton – Část 1: Specifikace, vlastnosti, výroba a shoda
ČSN EN 1317-1 a 2 Silniční záchytné systémy
ČSN EN 1337 Stavební ložiska
ČSN EN 13670 - Provádění betonových konstrukcí
ČSN 73 6200 Mostní názvosloví
ČSN 736201 Projekování mostních objektů
ČSN 73 6221 Přehledy mostů pozemních komunikací
ČSN 73 6220 Zatižitelnost a evidence mostů pozemních komunikací
ČSN 7362222 Zatižitelnost mostů PK
ČSN 73 6242 Navrhování a provádění vozovek na mostech pozemních komunikací
ČSN 33150 Revize elektrických zařízení
ČSN 322000-6 Elektrické instalace nízkého napětí – část 6, revize
ČSN EN 1594 Zásobování plynem – Plynovody s největším provozním tlakem nad 16 bar –
Funckní požadavky
TKP Kapitola 31 - Opravy betonových konstrukcí
TKP Kapitola 18 – Beton pro konstrukce
TKP Kapitola 19 - Ocelové mosty a konstrukce
TKP Kapitola 22 – Mostní ložiska
TKP Kapitola 23 – Mostní závěry
TKP-D Technické a kvalitativní podmínky pro dokumentaci staveb
TP 72 – Diagnostický průzkum mostů pozemních komunikací
TP 75 - Uložení nosných konstrukcí mostů pozemních komunikací
TP 80 – Elastický mostní závěr
TP 86 – Mostní závěry
TP 88 – Oprava trhlin v betonových konstrukcích
TP 107 – Odvodnění mostů pozemních komunikací
TP 114 – Svodidla na PK
TP 121 – Zkušební a diagnostické postupy pro mosty a ostatní konstrukce PK
TP 124 - Základní ochranná opatření pro omezení vlivu bludných proudů na mostní objekty a
ostatní betonové konstrukce pozemních komunikací
TP 139 – Betonové svodidlo
TP 154 - Provoz, správa a údržba tunelů PK
TP 160 - Mostní elastomerová ložiska
TP 173 - Použití mostních hřncových ložisek
TP 175 - Stanovení životnosti betonových konstrukcí objektů pozemních komunikací
TP 186 – Zábradlí na pozemních komunikacích
TP 201 – Měření a dlouhodobé sledování trhlin v betonových konstrukcích PK.
TP 203 – Ocelová svodidla
TP 204 – Hydrotechnické posouzení mostních objektů na vodních tocích
TP 211 – Izolační systémy mostů PK
TP ... – Zásady pro omezení vzniku trhlin v betonových mostech.
VL-4 Mosty
VL-O Vzorové listy oprav mostních objektů PK
Metodický pokyn Provozování systému hospodaření s mosty 2008, včetně přílohy Metodika
finančního modulu BMS ver. 01/08
Systém jakosti v oboru pozemních komunikací (SJ-PK) - metodický pokyn, úplné znění
Metodický pokyn Oprávnění k výkonu prohlídek mostů PK, Věstník dopravy 19/2009,
www.pjpk.cz
Směrnice pro dokumentaci staveb PK.
Podkladem pro zpracování téhoto TP byla zpráva CEB - FIP bulletin 44: Concrete structure
management – Guide to ownership and good practice.
Příloha A - Přehled metod oprav

A.1 Všeobecně
Obecně je výběr vhodné metody ochrany nebo opravy betonové konstrukce závislý na řadě problémů závislých na různých faktorech. Metody oprav betonových konstrukcí jsou popsány v řadě publikací, z nichž nejznámější jsou: ACI 546R-96 „Concrete repair guide“ a ICRI „Concrete repair manual“.

Kompletní přehled je zpracován v normách EN 1504 – 1 až 9.

Metody a principy oprav je možné rozdělit do dvou základních skupin:
• poruchy a závady betonu
• poruchy v důsledku koroze výztuže.

Při výběru ochranné nebo opravné metody musí být vyhodnoceny tyto požadavky:
• požadavky definované správcem konstrukce,
• předpokládané opravy, zkušenosti a úspěšnost při použití obdobných metod oprav.

V EN 1504-9 je definováno 6 variant řešení (čl. 5.2), které má správce brát v úvahu v případě degradace betonové konstrukce:
• po určitou dobu nic nedělat (myšleno oprava konstrukce), ale provádět pravidelné prohlídky a monitorovat degradaci konstrukce,
• provést nový statický výpočet zatížitelnosti konstrukce,
• zabránit další degradaci konstrukce (např. omezit zatékání do konstrukce),
• provést opravu nebo zesílení části konstrukce,
• provést celkovou rekonstrukci části nebo celé konstrukce,
• provést demolici konstrukce a její náhradu novou konstrukcí.

A.2 Přehled aktivit dle EN 1504 – 9

Minimální požadavky pro posuzování vad a jejich příčin

- Stav konstrukce
- Původní projektové řešení
- Prostředí včetně vlivu znečištění
- Podmínky během vystavby
- Podmínky užívání konstrukce
- Historie konstrukce
- Budoucí použití konstrukce
Varianty řešení:
- po určitou dobu nic nedělat, ale provádět pravidelné prohlídky a monitorovat degradaci konstrukce,
- provést nový statický výpočet zatížitelnosti konstrukce,
- zabránit další degradaci konstrukce (např. omezit zatékání do konstrukce),
- provést opravu nebo zesílení části konstrukce,
- provést celkovou rekonstrukci části nebo celé konstrukce,
- provést demolici konstrukce a její náhradu novou konstrukcí

- Předpokládané využití, návrhová a provozní životnost konstrukce
- Požadované technické parametry
- Pravděpodobnost dlouhodobé funkčnosti ochrany nebo opravy konstrukce
- Možnosti pro dodatečnou ochranu a sledování konstrukce
- Akceptovatelný počet a náklady opakovaných oprav
- Náklady a způsob financování alternativních řešení oprav a ochrany, včetně ceny budoucí údržby
- Vlastnosti a možné způsoby přípravy podkladu (pro ochranu/opravu)
- Vzhled ošetřené nebo opravě konstrukce

Volba vhodného postupu
- Je postup vhodný pro typ, příčinu nebo kombinaci příčin a pro rozsah poškození konstrukce?
- Je postup vhodný pro budoucí provozní podmínky?
- Odpovídá postup zvolené variantě ochrany/opravy konstrukce?
- Je postup v souladu se zásadami ochrany a oprav?
- Jsou postupy proveditelné s použitím výrobků a systémů odpovídajících EN 1504, případně dalších příslušných EN?

Zásady ochrany a opravy konstrukce
1. Ochrana proti vnikání škodlivých látek
2. Ovlivnění vlhkosti konstrukce
3. Obnova betonu
4. zesílení konstrukce
5. Fyzikální odolnost
6. Odolnost vůči chemikáliím

Zásady a metody týkající se vad betonu
7. Ochrana nebo obnovení pasivace
8. Zvýšení odporu betonu
9. Úprava katodické oblasti
10. Katodická ochrana
11. Úprava anodické oblasti

Zásady a metody týkající se korozí výztuže
TP 120 – Údržba, opravy a rekonstrukce betonových mostů PK

Požadované vlastnosti výrobků a systémů

- Vlastnosti pro všechna uvažovaná použití (tato vlastnost se požaduje pro všechny aplikace)
- Vlastnosti pro některá uvažovaná použití (vyžaduje se pouze pro konkrétní aplikaci)
- Příslušná vlastnost se může uvažovat pro určitou konkrétní aplikaci

Údržba po dokončení ochrany/opravy

- Záznam o provedených pracích na ochraně/opravě
- Směrnice a pokyny pro prohlídky a údržbu, které musí být prováděny po zbytek návrhové životnosti betonové konstrukce (Projekt diagnostiky a údržby)

A.3 Příčiny vad a metody ochrany/opravy konstrukce

<table>
<thead>
<tr>
<th>Základní typ</th>
<th>Projev</th>
<th>Příčiny vady</th>
<th>Metoda ochrany</th>
</tr>
</thead>
<tbody>
<tr>
<td>Vady betonu</td>
<td>trhliny odprýskávání odpadávání vrstev celková degradace</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1. Mechanické</td>
<td>- náraz - přetěžování - pohyb/sedání - exploze - vibrace - zemětřesení</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Osnovení betonu Zesílení konstrukce</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2. Chemické</td>
<td>alkalická reakce kameníva agresivní látky (sírany hladová voda, kyseliny, soli) biologické procesy</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ochrana proti vnikání škodlivých látek Ovlivnění vlhkosti konstrukce Zvýšení odolnosti vůči chemikáliím</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3. Fyzikální</td>
<td>mrazové cykly tepelné účinky (oheň) krystalizace soli smrštování eroze opotfebení</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ochrana proti vnikání škodlivých látek Ovlivnění vlhkosti konstrukce Zvýšení fyzikální odolnosti Zesílení konstrukce</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Vady betonářské a předpinací výztuže</td>
<td>rovnoměrná koroze, důlková koroze, koroze pod napětím, trhliny</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Karbonatace</td>
<td>Zachování nebo obnovení pasivace Úprava anodicí oblasti</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Korozní kontaminanty</td>
<td>- chlorid sodný - chlorid vápenatý - ostatní</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Úprava katodové oblasti Katodová ochrana Úprava anodicí oblasti Zachování nebo obnovení pasivace</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Bludné proudy</td>
<td>Zvýšení odporu betonu</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
A.4 Výběr varianty ochrany/opravy

V této kapitole je popsán postup pro výběr varianty pro jednotlivou konstrukci, ale je možné tuto metodiku též aplikovat pro systém hospodaření s mostnimi objekty (např. BMS).

Při výběru vhodné varianty opravy rozhoduje velké množství faktorů, které jsou dále vyjmenovány:

- správně stanovená příčina závady
- druh problému, který má být řešen
- doba kdy má být proveden zásah/nebo požadovaná zbytková životnost konstrukce
- zda se jedná o zásah do nosné konstrukce/spodní stavby
- požadovaná doba životnosti po opravě,
- druh materiálů požitých k ochraně/opravě konstrukce a použitá metoda opravy
- požadavky na údržbu a další opravy po opětovném uvedení konstrukce do provozu
- projektová příprava
- výběr varianty ochrany/opravy
- načasování termínu provedení opravy
- provádění práci
- supervize (projektová příprava a vlastní realizace)
- ověření efektivnosti a kvality provedených prací
- následné monitorování konstrukce
- potřeba následné údržby a oprav po provedeném zásahu
- náklady na provedení (náklady uživatelů)

Je k dispozici řada různých metodik, které umožňují rozhodování při výběru variant opravy. Zpravidla se jedná o multikritériální rozhodování, kde musí být zapracována váha jednotlivých činiteľů použitých pro analýzu.

A.5 Postup při řízení a provádění zásahu na konstrukci

Na obr. A1 je znázorněn přehled hlavních aktivit při provádění prohlídek, diagnostiky, řízení a provedení zásahu na betonové konstrukci, které mají zajistit prodloužení jejího dalšího provozu.

Aktivity navazující na EN 1504-9 jsou označeny žlutou barvou.

Celozivotní péče o konstrukci a postup při provedení zásahu

<table>
<thead>
<tr>
<th>Postup nebo účel</th>
<th>etapa</th>
<th>Aktivita</th>
</tr>
</thead>
<tbody>
<tr>
<td>Projektová příprava a realizace stavby</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Stanovení požadavků objednatele/spáruj</td>
<td>1</td>
<td>Nastavení technických požadavků: Celozivotní strategie pro konstrukci</td>
</tr>
<tr>
<td>Sestavení týmu objednatele</td>
<td>1</td>
<td>Sestavení týmu, definování smluvních podmínek</td>
</tr>
<tr>
<td>Projektová příprava</td>
<td>1</td>
<td>Projektové práce a specifikace prací</td>
</tr>
<tr>
<td>Realizace</td>
<td>1</td>
<td>Realizace stavby</td>
</tr>
<tr>
<td>Uvedení do provozu</td>
<td>1</td>
<td>Prohlídky/přejímky</td>
</tr>
<tr>
<td>Provozování konstrukce po výstavbě</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Řízení provozu konstrukce po výstavbě</td>
<td>2</td>
<td>Zajištění celozivotního provádění prohlídek/monitorování a diagnostiky v návaznosti na strategii řízení konstrukce.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• Strategie řízení: potvrzení požadavků spráce</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• Dodržení režimu prohlídek a měření vedoucí ke zjištění stavu konstrukce</td>
</tr>
</tbody>
</table>
TP 120 – Údržba, opravy a rekonstrukce betonových mostů PK

Provedení zásahu pro ochranu nebo opravu konstrukce

<table>
<thead>
<tr>
<th>Sestavení týmu správce</th>
<th>3</th>
<th>Sestavení týmu, definování smluvních podmínek</th>
</tr>
</thead>
</table>
| Prohlídky a diagnostický průzkum, vyhodnocení souboru vlastností | 3 | 5 | Prohlídky/diag. průzkum pro:
- Určení příčiny degradace a jejího mechanizmu
- Určení stavu konstrukce
- Stanovení dalšího vývoje degradace
- Předpověď dalšího vývoje stavu konstrukce: z hlediska konstrukčního (zatížitelnost) a dalších jako sociální, ekonomická, vlivu na živ. prostředí a estetická)
- Provést přehodnocení projektovaných technických požadavků |
| Potvrzení záměrů správce | 3 | Řízení provozu konstrukce po provedeném zásahu:
- Stanovení doby životnosti, metody monitorování a údržby konstrukce
- Další související parametry (sociální, životní prostředí, ekonomické) |
| Výběr metody zásahu | 3 | • Přehled prací: specifikace a analýza prací
- Projekt zásahu: cíle a požadavky/úspěšnost |
| Smluvní podmínky | 3 | Definice a ocenění navržených technických řešení, dojednání a odsouhlasení podmínek smlouvy pro vybraná technická řešení a pro specialisty provádějící práce |
| Realizace | 3 | Provedení prací – provedení zásahu na konstrukci |

Provozní životnost po zásahu

| Řízení provozu po provedeném zásahu | 4 | Monitorování/prohlídky/provádění průzkum v návaznosti na strategii hospodaření s konstrukcí |
TP 120 – Údržba, opravy a rekonstrukce betonových mostů PK

Zásady celoživotní péče/údržby pro konstrukci (definováno ve fázi projektové přípravy)

Přijetí režimu prohlídek a průzkumů (definováno ve fázi projektové přípravy)

Provádění prohlídek a průzkumů ke zjištění stavu konstrukce a jakékoli její degradace

Vyhodnocení současného stavu konstrukce

Předpověď vývoje stavu konstrukce a dalšího rozvoje degradace

Provést přehodnocení návrhových parametrů konstrukce

Potvrzení varianty postupu pro zamezení/opravu závady

Specifikovat a provést vybranou metodu k zamezení nebo odstranění závady

Specifikovat požadavky na další prohlídky, monitorování a řízení

Poznámka:

Obr. A1 Přehled hlavních aktivit pro prohlídky, diagnostický průzkum, systém řízení a provedení zásahu na betonové konstrukcích vedoucí k prodloužení doby životnosti

Poznámka:

1. Požadovaná standardní celoživotní péče/údržba musí být definována již ve stádii projektové přípravy konstrukce. Při tom musí být uvažována řada faktorů, jak je:
 - Třída spolehlivosti
 - Třída kontroly projektových prací a realizace
 - Třída údržby

2. Kroky prováděné v návaznosti s metodikou EN 1504 – 9 jsou v grafu podbarvené.
V příloze je zpracován přehled metod podle EN 1504 – 1 až 9. Metody ochrany a oprav jsou rozděleny do dvou základních skupin – vady samotného betonu a vady související s korozí výztuže.

B.1 Degradovaný beton

1. Ochrana proti pronikání škodlivých látek (snížení nebo zamezení pronikání škodlivých činitelů jako je voda, další tekutiny, pára, plyny, chemické a geologické činitele)

<table>
<thead>
<tr>
<th>Postup dle EN 1504-9</th>
<th>Metoda založená na postupu</th>
<th>Odkaz na EN</th>
</tr>
</thead>
<tbody>
<tr>
<td>a. 1.1 Povrchová impregnace</td>
<td>Úprava betonu za účelem snížení jeho povrchové porozity a zpevnění povrchu. Póry a kapiláry jsou částečně nebo úplně zaplněny. Tuto úpravu se zpravidla na povrchu betonu vytvoří přerušovaný tenký film. Pojivy mohou být např. organické polymery.</td>
<td>EN 1504-2</td>
</tr>
<tr>
<td>b. 1.2 Povrchový nátěr</td>
<td>Úprava vytvářející souvislou ochrannou vrstvu na povrchu betonu. Tloušťka je zpravidla od 0,1 do 5,0 mm. Aplikace některých náterů vyžadují větší tloušťku vrstvy než 5 mm (zde se jedná o stěrky). Pojivy mohou být např. organické polymery, organické polymery s cementem jako jemným plnivem nebo hydraulický cement modifikovaný polymerovou disperzí.</td>
<td>EN 1504-2</td>
</tr>
<tr>
<td>c. 1.3 Výplň trhlin</td>
<td>Injektáž je používána k opravám betonu porušeného trhlinami nebo rozděleného na vrstvy a k utěsnění trhlin proti zatékání vody. Injektážní výrobky se při správné aplikaci dobře spojí s betonem a je tak možné obnovit jeho původní pevnost.</td>
<td>EN 1504-5</td>
</tr>
<tr>
<td>2. Kontrola vlhkosti</td>
<td>2.1 Hydrofobní impregnace</td>
<td>EN 1504-2</td>
</tr>
<tr>
<td>----------------------</td>
<td>---------------------------</td>
<td>-----------</td>
</tr>
<tr>
<td>2.1 Hydrofobní impregnace</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2.2 Povrchový nátěr viz. 1.2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2.3 Ochranné nebo překrytí</td>
<td>Elektrochemické ošetření – aplikace rozdílných potenciálů v části betonové konstrukce k omezení pronikání vody do betonu.</td>
<td></td>
</tr>
<tr>
<td>3. Opravy betonu</td>
<td>3.1 Nanášení malty ručně</td>
<td>EN 1504-3</td>
</tr>
<tr>
<td>Oprava betonové konstrukce do původního tvaru a funkce</td>
<td>Při menších opravách je možné nanásit malty ručně. Úspěch této metody spočívá v důkladném odstranění degradovaného betonu, dobré přínovavosti malty k betonu, omezení smršťování vysprávky a dobrém ošetření vysprávky po provedení opravy.</td>
<td></td>
</tr>
<tr>
<td>3.1 Nanášení malty ručně</td>
<td>Úspěch této metody spočívá v důkladném odstranění degradovaného betonu, dobré přínovavosti malty k betonu, omezení smršťování vysprávky a dobrém ošetření vysprávky po provedení opravy.</td>
<td></td>
</tr>
<tr>
<td>3.2 Dobetonování</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>U větších opravovaných ploch se provádí oprava dobetonováním.</td>
<td></td>
</tr>
<tr>
<td>3.3 Nástřik betonu nebo malty</td>
<td>U rozsáhlejších degradací a především u podhledových ploch se provádí opravy stříkaným betonem/maltou.</td>
<td></td>
</tr>
<tr>
<td>3.3 Nástřik betonu nebo malty</td>
<td></td>
<td></td>
</tr>
<tr>
<td>3.4 Náhrada prvků – doplnění nebo výměna části konstrukce.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>4. Zesílení konstrukce</td>
<td>4.1 Přidání nebo výměna výztuže</td>
<td>EN 1504-6</td>
</tr>
<tr>
<td>Zvýšení nebo obnovení únosnosti části betonové konstrukce</td>
<td>Přidání nebo výměna výztuže. Nové pruty výztuže by měly mít stejný nebo větší průměr než stávající výztuž.</td>
<td></td>
</tr>
<tr>
<td>4.2 Vlepení výztuže do předvrtaných otvorů</td>
<td>Přidání spojovací výztuže při dobetonování části konstrukce.</td>
<td></td>
</tr>
<tr>
<td>4.3 Přidání externí výztuže (ocel nebo FRP)</td>
<td>Dodatečné přikotvení/přilepení přídavných ocelových profilů nebo FRP lamel.</td>
<td></td>
</tr>
<tr>
<td>4.4 Zesílení přibetonováním (spf. deska)</td>
<td>Zesílení konstrukce přibetonováním, zpravidla spřáhující železobetonovou desku.</td>
<td></td>
</tr>
<tr>
<td>4.5 Injektáž trhlin, hnízd a dutin (viz. 1.4)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>4.6. Výplň trhlin a dutin.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>4.7 Dodatečné předpětí</td>
<td>Využití dodatečného předpětí pro zvýšení únosnosti. Přidáním předpětí dojde ke zvýšení napětí v konstrukci a u degradovaného betonu musí být zohledněno oslabení konstrukce o porušené části.</td>
<td></td>
</tr>
<tr>
<td>5. Fyzikální odolnost</td>
<td>5.1 Nátěry (viz. 1.2)</td>
<td>EN 1504-2</td>
</tr>
<tr>
<td></td>
<td>5.2 Impregnace (viz.1.1)</td>
<td></td>
</tr>
<tr>
<td>6. Chemická odolnost</td>
<td>6.1 Nátěry (viz. 1.2)</td>
<td>EN 1504-2</td>
</tr>
<tr>
<td></td>
<td>6.2 Impregnace (viz.1.1)</td>
<td></td>
</tr>
</tbody>
</table>
B.2 Koroze výztuže

 7.2 Náhrada kontaminovaného nebo zkarbonatovaného betonu. Musí být odstraněna vrstva kontaminovaného nebo zkarbonatovaného betonu a povrch musí být očištěn.
 7.3 Elektrochemická realkalizace zkarbonatovaného betonu. Provádí se pokud se jedná o neporušenou betonovou vrstvu s pH 9 a méně.
 7.4 Re-alkalizace zkarbonatovaného betonu difuzí. Na zkarbonatovaný povrch je nanesena vrstva cementové malty nebo betonu a dojde k re-alkalizaci difuzí.
 7.5 Elektrochemické odstranění chloridů. | EN 1504-3
| | EN 1504-3
| | EN 1504-1
| | EN 1504-2
| 8. Zvýšení odporu | 8.1 Snižení obsahu vlhkosti ošetřením povrchu konstrukce nebo jejím ochranním. Snížením obsahu vlhkosti v betonu se výrazně zpomalí průnik chloridových iontů k výztuži. | EN 1504-2
| 9. Regulování katodové oblasti | 9.1 Omezení přístupu kyslíku do konstrukce provedením saturace nebo nátěru v katodové oblasti, takže nemůže dojít ke katodové reakci. |
| 11. Regulování anodové oblasti | 11.1 Provedení nátěru výztuže nátěrem s aktivními pigmenty. Aktivní nátěr výztuže je nátěr, který obsahuje portlandský cement nebo elektrochemicky aktivní pigment (zinek), které fungují jako inhibitory a mohou zajistit lokální katodovou ochranu.
 11.2 Provedení bariérového nátěru. Bariérový nátěr výztuže zamezí pronikání půrovných vody na povrch výztuže z betonu.
 11.3 Aplikace inhibitory koroze. Inhibitory mohou být aplikovány jako povrchový nátěr a nebo elektrochemicky. Mohou být též přidány do opravné malty nebo betonu. Inhibitory vytváří pasivní membránu na povrchu výztuže. | EN 1504-7
| | | |